
Geometry vs Calculus

In these notes we are only going to work in the two dimensional case, but a
smilar treatment is possible in any dimension.

1 Geometry

1.1 Curves

We call a curve a 1-dimensional (nice) subset of the plane, which can be
parametrized by some function ~r (t) = (x(t), y(t)), with a ≤ t ≤ b. The points
~r (a) = A and ~r (b) = B are the end-points of the curve. We say that the curve
is closed if ~r (a) = ~r (b), and open otherwise.

We say that a curve is simple if it does not self intersect.

1.2 Regions

A region D in the plane is open if, for any point (x, y) in D, we can put a small
ball around (x, y) interely contained in D. Usually, a region will be open if it is
described by strict inequalities. We will always work with open regions.

An open region D is connected, if any two points can be connected by a
curve (called a path). This means that D is only “one piece”. We point out
that this is the definition of connected for open regions, not for generic regions.

An open region D is simply connected if it is connected and it has no
holes.

2 Vector fields

2.1 Definitions

A vector field ~F is exact, if there is a function f such that

~F = ~∇ f.

A vector field ~F is conservative if the integral of ~F along any curve C only
depends on the endpoint of C.
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A vector field ~F = 〈P,Q〉 is closed if

∂Q

∂x
=
∂P

∂y
.

2.2 Properties

Proposition 2.1. An exact vector field is conservative.

Proof. By the fundamental theorem of calculus for line integrals. Let C be
a curve from A to B, with parametrization ~r (t), a ≤ t ≤ b and ~r (a) = A,

~r (b) = B. Let ~F = ~∇ f be an exact vector field. Then∫
C

~F · d~r =

∫
C

~∇ f · d~r = f(~r (b))− f(~r (a)) = f(B)− f(A),

which only depends on A and B.

Proposition 2.2. Let ~F be a vector field. The following are equivalent:

(a) ~F is conservative;

(b) the integral of ~F along any closed curve is zero;

(c) the integral of ~F along any simple closed curve is zero.

Proof. First notice that if the integral along any closed curve is zero, then in
particular the integral any simple closed curve is zero. Conversely, each closed
curve can be cut as an union of simple closed curves, therefore, if the integral
on each part is zero, the overall integral is zero. This proves that the last two
conditions are equivalent.

Second, let ~F be conservative, and we will prove that the integral along any
closed curve is zero. Let C be a closed curve, and choose any two distinct points
A and B on C. These two points cut C in two curves C1 and −C2, say, the first
one from A to B and the second one from B to A. We have that C is the sum
of C1 and −C2. Therefore∫

C

~F · d~r=

∫
C1+(−C2)

~F · d~r =

∫
C1

~F · d~r +

∫
−C2

~F · d~r =

=

∫
C1

~F · d~r −
∫
C2

~F · d~r.

On the other hand, since ~F is conservative and C1 and C2 both go from A to
B, ∫

C1

~F · d~r =

∫
C2

~F · d~r.

Hence ∫
C

~F · d~r =

∫
C1

~F · d~r −
∫
C2

~F · d~r = 0.
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The remaing implication works exactly as the above one. We assume that
the integral of ~F along any closed curve is zero, and we will prove that the
integral only depend on the endpoints. Let C1, C2 be two curves with the same
end-points, both from A to B. If we glue them together, but changing the
direction of C2, that is, going from B to A, we obtain a closed curve C. Now C
is the sum of C1 and −C2. Since the integral of ~F along C is zero,

0 =

∫
C

~F · d~r =

∫
C1+(−C2)

~F · d~r =

∫
C1

~F · d~r +

∫
−C2

~F · d~r =

=

∫
C1

~F · d~r −
∫
C2

~F · d~r,

that is, ∫
C1

~F · d~r =

∫
C2

~F · d~r.

Proposition 2.3. An exact vector field is closed.

Proof. If ~∇ f = ~F = 〈P,Q〉, then P = ∂f/∂x and Q = ∂f/∂y. Then

∂Q

∂x
=

∂2f

∂x∂y
=

∂2f

∂y∂x
=
∂P

∂y
.

3 Geometry vs Calculus

The next property is naturally the first one of this section, because is the one
with the weakest geometric assumptions, but is the one with the hardest proof.

Proposition 3.1. Let ~F be a vector field defined on an open region D. If ~F
is conservative, then it’s closed.

Proof. Suppose that ~F is not closed. We will see how this leads to a contradic-
tion. If ~F is not closed, there is a point (x0, y0) where

∂Q

∂x
− ∂P

∂y
6= 0.

We can assume that that value is actually positive. If it is negative, then proof
proceed in the same way. So let

∂Q

∂x
− ∂P

∂y
> 0

at (x0, y0). By continuity and by the openess of D, there is a ball B in D
where ∂Q

∂x −
∂P
∂y > 0. Let C be the boundary of B (positively oriented). Then

C is a simple closed curve contained in D. Since ~F is conservative,∫
C

~F · d~r = 0.
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If we combine the above equality with Green’s theorem (and with what we said
about B),

0 =

∫
C

~F · d~r =

∫∫
B

(
∂Q

∂x
− ∂P

∂y

)
dxdy > 0,

and this is a contradiction.

Proposition 3.2. Let ~F be a vector field defined on an open connected region
D. If ~F is conservative, then it’s exact.

Proof. We can fix any point (x0, y0) in D. For any point (x, y) in D, there is a

path C that connects (x0, y0) with (x, y), since D is open connected. Since ~F
is conservative, the integral ∫

C

~F · d~r

only depends on the end-points (x0, y0) and (x, y). Therefore, we can define the
following function

f(y, x) =

∫ (x,y)

(x0,y0)

~F · d~r,

where the integral is taken on any curve from (x0, y0) to (x, y). We emphasize

that the function f(x, y) is well-defined since ~F is conservative, and can be
defined for any point since D is open connected.

It is possible to check (it is on the book, a little technical) that

~∇ f = ~F .

Essentially, we wanted the integral to be a solution, as in the one-dimensional
case, and the assumptions on D and ~F guarantee that we can do it.

Proposition 3.3 (Poincare’s theorem). Let ~F be a vector field defined on an

open simply connected (hence connected) region D. If ~F is closed, then
it’s exact.

Proof. Since D is open connected, it is enough to prove that ~F is conservative.
Then, by the previous result, it will also be exact.

Let ~F = 〈P,Q〉 be closed, that is, with

∂Q

∂x
=
∂P

∂y
.

Let C be any simple closed curve in D. Since D is simply connected, C is the
boundary of a region B contained in D. We can assume that C is positively
oriented, otherwise there is only a difference in sign. By Green’s theorem∫

C

~F · d~r =

∫∫
B

(
∂Q

∂x
− ∂P

∂y

)
dxdy = 0.
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4 Usage in “real” life

How do we use the previous results? If we always assume our vector fields to
be defined over an open region D, we have the following implications

exact

��
conservative

��

D connected

=E

closed.

D simply connected

=E

If you want to check if a vector field ~F is exact on a region D the general strategy
is the following. First, if ~F closed? If no, than it cannot be exact. If it is closed,
look at the region. If D is open simply connected, then ~F is exact and you are
done. If D is not open simply connected, then you have to try to find an f such
that ~∇ f = ~F .

Usually, it does not pay off to try to check if the vector field is conservative.
It is almost impossible to show directly that the integral is 0 along any closed
curve C. Even if you suspect your vector field not conservative (hence not
exact), it may not be clear how to find a closed curve where the integral is non
zero (and anyway, you need to compute the integral).

5 Examples

5.1 An exact vector field

By definition, for any function f , ~∇ f is exact. For example, if f = xy,

~∇ f =< y, x >

is exact.

5.2 A vector field that is not closed (hence nor conserva-
tive, nor exact)

Let
~F =< −y, x > .

If we compute the mixed derivatives, ∂Q/∂x = 1, while ∂P/∂y = −1.

5.3 A closed vector field not conservative (hence nor ex-
act)

This example is on the book. Let

~F =
1

x2 + y2
< −y, x > .
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Then
∂Q

∂x
=
y2 − x2

x2 + y2
=
∂P

∂y
.

This means that ~F is closed. However, if C is the unit circle (considered coun-
terclockwise) ∫

C

~F · d~r = 2π.

Therefore, ~F is not conservative. Notice that the domain of ~F is R2 − {(0, 0)}
which is not simply connected.

5.4 A conservative vector field that is not exact

Let
~F =<

1

x
, y > .

Notice that the domain of ~F is everything except the y-axis (where x = 0).

Thus, the domain of ~F is not connected, but constists of two pieces. Each piece,
however, is simply connected.

On the first piece {x > 0}, ~F is exact, and we can explicitely find an an-
tiderivative (a potential). If

f1(x, y) = ln(x) + y2/2,

then ~∇ f1 = ~F . Notice that f1 is only defined for x > 0. Similarly on the second
piece {x < 0}, we have

f2(x, y) = − ln(−x) + y2/2,

with ~∇ f2 = ~F . Again, f2 is only defined for x < 0.
Each closed curve C in the domain of ~F has to be contained in one of the

two pieces {x > 0} or {x < 0}, where ~F has a potential. Therefore
∫
C
~F ·d~r = 0.

However, there is no way of gluing f1 and f2 (or f2 + c for some constant c) in a

way that is defined on all the plane. Therefore ~F is conservative but not exact.
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