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How to use these notes

This notes are my teaching notes, but expanded a little. They have all the
definitions, examples and properties that we see in class. I am only writing
the proofs of statements when said proofs are different (or absent) from the
textbook [Fra], otherwise I am quoting where on the book is the proof. This
notes are not substitutive of the book.

There are three types of exercises. Homework is written on the website
and is mandatory; exercises you should try to do them, especially if you do
not know how to do them; food for thought are exercises you should read, and
maybe think about how you would solve them, but the full detailed solution
is often too tedious to be written down (you should anyway be able to solve
them).
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Chapter 1

Basic contructions

1.1 Groups

([Fra], Section 4 )

Definition 1.1.1. Let G be a non-empty set. A binary operation on G is a
function

∗ : G×G→ G.

For ease of notation, if a, b ∈ G, we will denote ∗(a, b) by a ∗ b or simply ab
(when no confusion is likely), and we will call the operation ∗ product.

Definition 1.1.2. Let G be a non-empty set and ∗ be product (i.e. binary
operation) on G. The product is called associative if, for every a, b, c ∈ G,

(a ∗ b) ∗ c = a ∗ (b ∗ c).

The product is called commutative or abelian if, for every a, b ∈ G,

a ∗ b = b ∗ a.

Definition 1.1.3. A group (G, ∗) is a (non-empty) set with a product ∗ such
that

G1: the product is associative;

G2: there is an identity element e ∈ G such that, for all a ∈ G,

a ∗ e = e ∗ a = a;

G3: for each a ∈ G, there is an inverse element a′ ∈ G such that

a ∗ a′ = a′ ∗ a = e.
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Food For Thought 1.1 ([Fra], exercise 4.22). For the definition of group, in
which other order could these axioms be given? Which order, instead, would
not make sense?

Definition 1.1.4. A group (G, ∗) is abelian if ∗ is commutative.

Example 1.1.5. The integer, rational, real and complex numbers, Z, Q, R and
C, are groups with respect to the usual operations of sum. They are not groups
with respect to the usual product as, for example, 0 does not have an inverse.

Example 1.1.6. The natural numbers with the usual sum (N,+) is not a group.
It has an identity element 0, but not every element has an inverse (no element
except 0 has an inverse).

Example 1.1.7. The set of non-zero rational, real or complex numbers, Q∗ =
Q \ {0}, R∗ = R \ {0} and C∗ = C \ {0}, are groups with respect to the usual
product. The set Z \ {0} has an identity element, but not every element has an
inverse, thus it is not a group.

Example 1.1.8. The set of (strictly) positive rational or real numbers, Q+ and
R+, are groups with respect to the usual multiplication.

Example 1.1.9. The set C(R,R) of all continuous functions R→ R is a group
under the operation (f ∗g)(x) = f(x)+g(x), where f, g are continuous functions
from R to R and x ∈ R.

Example 1.1.10. The unit circle S1 = {z ∈ C | |z| = 1} is a group. Indeed,
every element in S1 is of the form z = e2πiθ, where θ ∈ R. The identity is 1 = e0,
while the inverse of e2πiθ is e−2πiθ. Using the notation of conjugates, if z ∈ S1,
z−1 = z̄. Similarly, the group µn = {z ∈ C | zn = 1} is a group.

Example 1.1.11. The next example of group has very different notations in
the literature. Let n ≥ 2 be an integer, and let Z/n be the the set

Z/n = {0, . . . , n− 1},

with operation

a+n b = a+ b =

{
a+ b, if a+ b < n,

a+ b− n, if a+ b ≥ n.

This is a group, with identity element 0, and with inverse of a being n− a. This
group is sometimes also denoted by Zn, Z/(n) or Z/nZ. To compute on this
group is like working on a clock with n hours: each time you loop around you
start again from 0.

Example 1.1.12. We will see later that, for any n ≥ 2, (Z/n,+n) and (µn, ·)
are isomorphic. Moreover, if we denote by Z× = {a ∈ Z | a has an inverse with
respect to the product}, then Z× = {1,−1} = µ2 is a group (with respect to
the usual product).
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Exercise 1.2 ([Fra], exercise 4.8). We can also consider the multiplication
modulo n on Z/n. For example 5 · 6 = 2 in Z/7 because 5 · 6 = 30 = 4 · 7 + 2,
so if you imagine to read the time on a clock with 7 hours, 5 · 6 is 2. The set
(Z/8)× = {1, 3, 5, 7} is a group with respect to this multiplication.

Food For Thought 1.3. The above group (Z/8)× is not isomorphic to µ4.

Exercise 1.4 ([Fra], 4.14). Let ∗ on Q+ be defined by a ∗ b = ab
2 . Check that

this is a group.

Food For Thought 1.5 ([Fra], exercise 19). Let S = R \ {−1} (the set of all
real numbers except −1), and let ∗ be defined by

a ∗ b = a+ b+ ab,

a, b ∈ S.

(a) The operation ∗ is a product (a binary operation) on S, that is, S is closed
under ∗;

(b) moreover (S, ∗) is a group.

(c) What is the solution of 2 ∗ x ∗ 3 = 7?

Exercise 1.6 ([Fra], exercise 4.5). Let ∗ on R∗ be defined by a ∗ b = b−1a.
Check that ∗ is associative and there is an identity element to the right (i.e.
a ∗ e = a), but not to the left.

Exercise 1.7. Which of the above groups are abelian?

Example 1.1.13. Let V be a vector space with sum +. If we “forget” about
the multiplication by a scalar, (V,+) is an abelian group.

Example 1.1.14 (Matrices). Let Mm×n(R) be the set of m× n matrices with
real entries. Then (Mm×n(R),+) is a group. Notice that (Mn×n(R), ·) is not a
group as not all matrices are invertible. However, if we denote GLn(R) to be
the set of invertible n × n matrices, then (GLn(R), ·) is a group. Notice that
this set is closed under multiplication, so that the multiplication of matrices
defines a binary operation on GLn(R). Also notice that, if A,B ∈ GLn(R),
(AB)−1 = B−1A−1.

For n ≥ 2 there are examples of n×n invertible matrices A and B such that
AB 6= BA, so that GLn(R) is not abelian for n ≥ 2. For n = 1, GL1(R) ∼= R∗
(the two groups are isomorphic).

Lemma 1.1.15 (Cancellation laws). Let (G, ∗) be a group. Then the left and
right cancellation laws hold in G, that is, for any a, b, c ∈ G, a∗ c = b∗ c implies
a = b and c ∗ a = c ∗ b implies a ∗ b.

Proof. This is [Fra, 4.15].

5



Remark 1.1.16. The product is a well defined operation on matrices, so we can
consider (Mn×n(R), ·) (the n×n matrices with product). The above property is
known to fail in this case. Indeed, (Mn×n(R), ·) is not a group (singular matrices
do not have an inverse).

Lemma 1.1.17 (Uniqueness of solution). Let (G, ∗) be a group. For any a, b ∈
G, the equations a ∗ x = b and y ∗ a = b have unique solutions x and y in G.

Proof. This is [Fra, 4.16].

Remark 1.1.18. You saw an instance of the previous result in linear algebra
when the group is GLn(R).

Proposition 1.1.19 (Uniqueness of identity and inverse). Let (G, ∗) be a group.
The identity element is unique, and for any a ∈ G, there is a unique inverse
element.

Proof. We will first show the uniqueness of the identity element. Let us assume
that there are two identity elements e, e′ ∈ G. Since e is an identity element,
e ∗ e′ = e′; on the other hand, since e′ is an identity element, e ∗ e′ = e. Thus,
e′ = e ∗ e′ = e.

The uniqueness of the inverse is [Fra, 4.17].

Notation 1.1.20. Given the uniqueness of the inverse, if G is a group and
a ∈ G, we will denote by a−1 the inverse of a. In the same spirit, we are going
to use the notation an to indicate

an =


a ∗ . . . ∗ a︸ ︷︷ ︸
n times

, n > 0,

e, n = 0,

a−1 ∗ . . . ∗ a−1︸ ︷︷ ︸
−n times

, n < 0.

Corollary 1.1.21. Let (G, ∗) be a group and let a, b ∈ G. Then (a ∗ b)−1 =
b−1 ∗ a−1.

Proof. It is enough to notice that (b−1 ∗ a−1) ∗ (a ∗ b) = b−1 ∗ (a−1 ∗ a) ∗ b =
b−1 ∗ e ∗ b = b−1 ∗ b = e and (a ∗ b) ∗ (b−1 ∗ a−1) = e.

Notation 1.1.22. Let (G, ∗) be a group. From now on we will use the following
notation. If G is abelian, we will denote the operation by +, the identity e = 0
and the inverse of a ∈ G by −a. Similarly a + . . . + a n times will be denoted
by na. If G is not necessarily abelian, we will anyway not use the symbol ∗
anymore and the product will be denoted by ab or a · b. The inverse will be
denoted (as before) by a−1, while the identity will be denoted by e = 1.

Definition 1.1.23. Let G be a finite group, i.e. a group with finitely many
elements. The order of G, denoted by |G| is the number of elements of G.

Exercise 1.8. What is the order of Z/n?
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One tool for studying groups are the multiplication tables, or group tables.

Example 1.1.24. If a group has two elements G = {e, a} with the multipli-
cation table we can check that there is only one possible multiplication law, so
that G has to be isomorphic to Z/2.

e a

e e a
a a e

Table 1.1: Group table of G = {e, a}

Example 1.1.25. Let G be a group. The row and columns corresponding to
e (in the multiplication table) are always immediate. Moreover, since every
element has a unique inverse, the element e appears in each row and column,
and only once per row or column. Indeed, the equations a ∗ x = e and x ∗ a = e
have unique solutions. Similarly, since the equations a∗x = b and x∗a = b have
unique solutions, every element b ∈ G appears exactly once in each column and
row.

e g1 . . . gi . . . gn−1

e e g1 . . . gi . . . gn−1
g1 g1 g21 . . . g1gi . . . g1gn−1
. . . . . . . . . . . . . . . . . . . . .
gj gj gjg1 . . . e . . . gjgn−1
. . . . . . . . . . . . . . . . . . . . .
gn−1 gn−1 gn−1g1 . . . gn−1gi . . . g2n−1

Table 1.2: Generic multiplication table

Exercise 1.9. Using a multiplication table, one can see that there is only one
group with three elements.

Homework. Exercises 2, 3, 7, 19, 29, 32, 34 from section 4 of [Fra].

1.2 Subgroups

([Fra], Section 5 and 7 )

Definition 1.2.1. Let G be a group, and let H be a subset of G. We say that
H is a subgroup if H is closed under the product of G and it is itself a group
with respect that that product. We will use the denote it by H ≤ G. If H is a
subgroup of G and H 6= G, we will use the notation H < G.
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Example 1.2.2. For example (Z,+) < (R,+), but (Q∗, ·) is not a subgroup of
(Q,+), since it has a different operation.

Example 1.2.3. For any n ∈ Z,let nZ = {na | a ∈ Z}. Note that nZ is the set
of all integers divisible by n if n 6= 0, or nZ = {0} if n = 0. Then nZ ≤ Z (with
respect to the sum).

Exercise 1.10. For which n, nZ < Z?

Example 1.2.4. We have the chain of (multiplicative) subgroups µn < S1 <
C∗.

Example 1.2.5. Let G = Z/4. Then H = {0, 2} is a subgroup of Z/4. Notice
that {0, 3} is not a subgroup, as it is not closed under sum.

Example 1.2.6. Let V be a vector space and let W be a subspace. Then
W < V (W is a subgroup of V ).

Example 1.2.7 ([Fra], exercise 5.10). The set of upper-triangular n×nmatrices
with no zeros on the diagonal is a subgroup of GLn(R).

Remark 1.2.8. Any group G has always at least two subgroups, G itself and
{e}.

Definition 1.2.9. Let G be a group, and let H ≤ G. If H 6= G, it is called a
proper subgroup; G, as a subgroup of itself, is called the improper subgroup. If
H 6= {e}, then H is called a nontrivial subgroup, while H = {e} is the trivial
subgroup.

Lemma 1.2.10. Let H < G. Then the identity element of H is the same as
the one of G. Similarly, for any a ∈ H, the inverse of a in H is the same as
the inverse of a in G.

Proof. Let 1G be the identity element of G and let 1H be the identity element
of H. By definition, for all g ∈ G,

1G · g = g · 1G = g.

In particular, the above identity must be true for all g ∈ H ⊆ G, thus 1G is
an identity element for H. By uniqueness of the identity element in a group
(applied to H), 1G = 1H .

Let now a−1 be the inverse of a in G and let a′ be the inverse of a in H.
Then

a′ · a = a · a′ = 1H = 1G,

so that a′ is also an inverse for a in G. By uniqueness of the inverse a′ = a−1.

Lemma 1.2.11. Let G be a group and let H ⊆ G (a subset). Then H is a
subgroup if and only if

(a) ∀a, b ∈ H, ab ∈ H (H is closed under the operation of G),
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(b) 1 ∈ H,

(c) ∀a ∈ H, a−1 ∈ H.

Proof. This is [Fra, 5.14].

Proposition 1.2.12. Let G be a group and let H ⊆ G be a non-empty subset.
Then H is a subgroup if and only if, ∀a, b ∈ H, ab−1 ∈ H.

Proof. First let us assume that H is a subgroup and let us show that it satisfies
the above property. Let a, b ∈ H; since H is a subgroup b−1 ∈ H. Again, since
H is a subgroup, and thus closed under product, ab−1 ∈ H.

Second let us prove the other direction, and let H be a non-empty subset of
G such that,

∀a, b ∈ H, ab−1 ∈ H. (1.1)

We will show that H satisfies the three properties of the previous lemma. We
will show them in the order (b), (c) and (a). Since H is non-empty there exists
an a ∈ H. Let us use the relation (1.1) with a and b = a. Then 1 = aa−1 ∈ H.
This shows (b). Now, for any a ∈ H, let us apply (1.1) to 1 and a. This shows
that a−1 = 1 · a−1 ∈ H. This shows (c). Finally, for any a, b ∈ H, by part (c)
(which we have already proven) b−1 ∈ H, so we can apply (1.1) to a and b−1

obtaining that ab = a(b−1)−1 ∈ H. This shows (a). By the previous lemma, H
is a subgroup.

Example 1.2.13. Let G be a group and let a ∈ G. Which subgroups of G
will contain a? And in particular, which one is the smallest? Let H be the any
subgroup of G containing a. Since H must be closed under product and a ∈ H,
a2 ∈ H. But then a3 = a2 · a ∈ H, and so forth to deduce that an ∈ H for all
n > 0. Again, since H is a subgroup, the inverse a−1 must be in H, a−1 ∈ H.
With a reasoning similar to the one before an ∈ H for all n < 0. Clearly also
1 = a0 ∈ H. So H must contain all possible powers of the element a. It is
interesting to notice that the collection of all powers of a is already a subgroup.
So the smallest subgroup of G containing a is the collection of all powers of a,
that is, it has everything it has to have, but nothing more.

Lemma 1.2.14. Let G be a group and let a ∈ G. The set

〈a〉 = {an |n ∈ Z}

is a subgroup, and is the smaller subgroup of G containing a.

Proof. This is [Fra, 5.17].

Remark 1.2.15. We are not claiming that all the powers are different; they
might be equal. Even in that case, since we do not know a priori when to stop,
we have to write them all. For example, in G = Z/4, {0, 2} = 〈2〉.

9



Definition 1.2.16. Let G be a group and let a ∈ G. The subgroup 〈a〉 is called
the cyclic subgroup of G generated by a.

Example 1.2.17. Let n ∈ Z; then nZ = 〈n〉.

Exercise 1.11. Show that, for each n ≥ 2, µn is a cyclic subgroup of S1.

Food For Thought 1.12. Let µ∞ = {z ∈ S1 | zn = 1 for some n ≥ 1} (the n
may be different for each element). Show that µ∞ < S1 and that it is not a
cyclic subgroup.

Exercise 1.13 ([Fra], exercise 5.55). Let G = Z/p where p is a prime number.
Show that, for each a ∈ Z/p, a 6= 0, 〈a〉 = Z/p. Conclude that Z/p has only
two subgroups when p is prime. Show by example that this is not the case for
Z/n when n is not prime.

We can extend the notion of generalize the notion of generation to more than
one element.

Definition 1.2.18. Let G be a group and let S be a subset of G. The subgroup
generated by S, denoted by 〈S〉 is the smallest subset of G containing S. We
say the the elements of S are the generators of 〈S〉. If 〈S〉 = G, we say that
S is a generating set for G and that the elements of S are generators of G. If
G = 〈S〉 and S is finite, we say that G is finitely generated.

Example 1.2.19. Since Z = 〈1〉, Z is finitely generated, although it is not
finite.

Example 1.2.20. We can check that Z/6 can be generated by {2, 3}. Indeed,
if H is any subgroup of Z/6 containing 3 and 2, it must contain also 3− 2 = 1
(remember the criterion for subgroups), but then it must be all Z/6, since
Z/6 = 〈1〉.

Exercise 1.14. Let S = {2, 3} ⊆ Z. Show that 〈S〉 = Z. Show that the same
is true for S = {3, 5}.

Homework. From section 5 do the exercises 5, 12, 47, 51, 54.

1.3 Cyclic groups

([Fra], Section 6 )

Definition 1.3.1. Let G be a group and a ∈ G. We say that a generates G, or
is a generator for G if 〈a〉 = G. In this case we say that G is cyclic.

Example 1.3.2. The group Z (with respect to the sum) is cyclic: Z = 〈1〉 =
〈−1〉. Similarly, each Z/n is cyclic. As we will see, these are the only examples
of cyclic groups.

Proposition 1.3.3. Every cyclic group is abelian.
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Proof. This is [Fra, 6.1].

Proposition 1.3.4 (Division algorithm for Z). Let m be a fixed positive integer.
For each integer n there are unique integers q and r such that

n = qm+ r, 0 ≤ r < n.

Proof. This is [Fra, 6.3].

Example 1.3.5. The quotient and the remainder for 53 divided by 11 are q = 4
and r = 9:

53 = 4 · 11 + 9.

Definition 1.3.6. With the above notation, q is called the quotient and r the
remainder.

Theorem 1.3.7. A subgroup of a cycle group is cyclic.

Proof. This is [Fra, 6.6].

Definition 1.3.8. Let r and s be two positive integers. The greatest common
divisor of r and s, denoted by gcd(r, s), is the greatest positive number dividing
both r and s. If gcd(r, s) = 1, we say that r and s are relatively prime or
coprime.

The next lemma is a very important result.

Lemma 1.3.9. Let r and s be two positive integers, and let d = gcd(r, s). There
are integers n,m ∈ Z such that

d = nr +ms.

Proof. Let us consider the group H = {nr +ms |n,m ∈ Z} (this is a group by
[Fra, exercise 6.45]). Since H is a subgroup of Z, which is a cyclic group, H
must be cyclic as well, that is, there must exists d′ ∈ Z such that H = 〈d′〉.
Since 〈−d′〉 = 〈d′〉 = d′Z, we can assume that d′ is positive. Notice that, by
construction, d′ ∈ H (since it generates it), so that there must exist integers
m,n ∈ Z such that

d′ = nr +ms.

We will show that d′ = d. Since d divides both r and s, it divides the left
hand side of the above equation, and thus it divides d′. On the other hand,
since r = 1 · r + 0 · s ∈ H = d′Z, d′ divides r. Similarly d′ divides s. So d′ is
a common divisor of r and s, and thus d′ must divide d, which is the largest
common divisor of r and s. Since d′ divides d and d divides d′, and they are
both positive integers, they must be equal.

Lemma 1.3.10. Let r and s be two positive integers, and let d = gcd(r, s).
Then

〈d〉 = {nr +ms |n,m ∈ Z} = 〈r, s〉.
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Proof. There are several statements here that need to be proven. Let H =
{nr + ms |n,m ∈ Z}. We need to prove that (a) H is a subgroup, (b) that
H = 〈r, s〉 and (c) that H = 〈d〉.

Part (a) is [Fra, exercise 6.45], as discussed above, and part (c) is how we
proved the previous lemma: in the notation of that lemma, we have 〈d〉 = 〈d′〉 =
H.

Let us prove part (b), by showing the double inclusion. Clearly r, s ∈ H (for
example r = 1 · r + 0 · s). Since H is a subgroup of Z containing r and s, it
must be 〈r, s〉 ⊆ H, i.e., H must contain the smallest subgroup of Z containing
r and s. On the other hand, since 〈r, s〉 contains both r and s and is a group,
it must contain all possible (linear) combinations of r and s, so that H ⊆ 〈r, s〉.
Therefore, H = 〈r, s〉.

Example 1.3.11. Let r, s ∈ Z. By the previous lemma r and s are coprime if
and only if 〈r, s〉 = Z.

The next theorem says, essentially, that all infinite cyclic groups are like Z
and all finite groups are like Z/n.

Theorem 1.3.12 (Group structure of cyclic groups). Let G = 〈g〉 be a cyclic
group. If G is infinite then G is isomorphic to (Z,+); if it has order n is
isomorphic to Z/n.

Proof. This is [Fra, 6.10].

Proposition 1.3.13. Let G = 〈g〉 be a finite cyclic group of order n. Let s ∈ Z
and let d = gcd(s, n). Then |〈gs〉| = n/d, and, for any t ∈ Z, 〈gs〉 = 〈gt〉 if and
only if gcd(s, n) = gcd(t, n).

We are not going to prove this proposition, but you may use it in the home-
work. What I want you to take out of this proposition is the following corollary,
which we will see is true more in general (Lagrange’s theorem).

Corollary 1.3.14. Let G be a finite cyclic group, and let H be a subgroup
(necessarily finite). The order of H divides the order of G.

Proof. Let G = 〈g〉. Since each subgroup of a cyclic group is cyclic, there
is s ∈ Z such that H = 〈gs〉. By the previous proposition, if n = |G| and
d = gcd(s, n), then |〈gs〉 = |H| = n/d. Thus |H| = n/d divides |G| = n.

Homework. From section 6 do exercises 48, 51, 52.

1.4 Group homomorphisms

([Fra], Section 13 )

In this first definition I am going to be emphatic on the group operations.
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Definition 1.4.1. Let (G, ∗G) and (H, ∗H) be two groups. A group homomor-
phism, or group morphism or homomorphism, between G and H is a function
ϕ : G→ H such that, for every a, b ∈ G, ϕ(a ∗G b) = ϕ(a) ∗H ϕ(b).

A group homomorphism is a function which respects the group operations.

Example 1.4.2. The inclusion ϕ : Z → Q, ϕ(n) = n is a group homomor-
phism. In general, if H ≤ G, the inclusion ϕ : H → G, ϕ(a) = a is a group
homomorphism.

Example 1.4.3. Let G and H be any two groups. The map ϕ : G→ H, ϕ(g) =
1 = 1H for all g ∈ G is a homomorphism (called the trivial homomorphism).

Example 1.4.4. The determinant det : GLn(R) → R∗ is a group homomor-
phism: det(AB) = detAdetB.

Example 1.4.5. The exponential map exp : (R,+) → (R+, ·), exp(s) = es

is a group homomorphism: exp(s + t) = es+t = eset = exp(s) exp(t). More
generally, for any a ∈ R+, the map expa : R → R+, expa(s) = as is a group
homomorphism.

Example 1.4.6. The logarithm (in any base) ln : (R+, ·) → (R,+) is a group
homomorphism: ln(xy) = ln(x) + ln(y).

Example 1.4.7. Let L : V → W be a linear transformation between vector
spaces. Then L is a homomorphism between the group structures of V and W :
L(~u+ ~v) = L~u+ L~v.

Example 1.4.8 (Evaluation homomorphism). Let C := C(R,R) be the group
of all continuous functions from R to R. For any c ∈ R, there is a group
homomorphism Φc : C → R, called the evaluation homomorphism given by
Φc(f) = f(c), for f ∈ C. Recall that the group law on C is given by, if f, g ∈
C, (f + g)(x) = f(g) + g(x), example 1.1.9. Let us chai that Φc is a group
homomorphism. For every f, g ∈ C,

Φc(f + g) = (f + g)(c) = f(c) + g(c) = Φc(f) + Φc(g).

Example 1.4.9 (Reduction modulo m, [Fra], 13.10). There is a natural map
Z → Z/m which sends each number into the class of its remainder modulo m.
On [Fra, 13.10] there is the entire computation. We will see later a different
construction of this map, which will make simpler to check that it is a group
homomorphism.

Lemma 1.4.10. Let G, H and K groups and let ϕ : G → H and ψ : H →
K be group homomorphisms. The composition ψ ◦ ϕ : G → K is a group
homomorphism.

Proof. This is [Fra, exercise 13.49], and you have to do it as homework.

Definition 1.4.11. Let G and H be two groups and let ϕ : G→ H be a group
homomorphism. We call the image of ϕ (or range), the set imϕ := {ϕ(g) | g ∈
G} ⊆ H. We called the kernel of ϕ the set kerϕ := {g ∈ G |ϕ(g) = 1H}.
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Lemma 1.4.12. Let G and H be two groups and let ϕ : G → H be a group
homomorphism. Then

(a) ϕ(1G) = 1H ;

(b) for any g ∈ G, ϕ(g−1) = ϕ(g)−1;

(c) for any subgroup K ≤ G, the set ϕ(K) = {ϕ(g) | g ∈ K} is a subgroup
ϕ(K) ≤ H;

(d) for any subgroup K ≤ H, the set ϕ−1(K) = {g ∈ G |ϕ(g) ∈ K} is a
subgroup ϕ−1(K) ≤ G.

Proof. Part (a) and (b) are on [Fra, 13.12]. The following proofs for (c) and (d)
are different (shorter).

Let h1, h2 ∈ ϕ(K); by definition there exist g1, g2 ∈ K such that ϕ(g1) = h1
and ϕ(g2) = h2. Since K is a subgroup g1g

−1
2 ∈ K, and thus ϕ(g1g

−1
2 ) ∈ ϕ(K).

Therefore

h1h−12 = ϕ(g1)ϕ(g2)−1 = ϕ(g1)ϕ(g−12 ) (by part (b))

= ϕ(g1g
−1
2 ) (ϕ is a homomorphism)

belongs to ϕ(K). Hence ϕ(K) is a subgroup, and this proves (c).
Finally let g1, g2 ∈ ϕ−1(K). By definition, ϕ(g1), ϕ(g2) ∈ K, and, since K

is a subgroup, ϕ(g1)ϕ(g2)−1 ∈ K. Then ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g2)−1 ∈ K, which,

by definition, means that g1g
−1
2 ∈ ϕ−1(K).

Corollary 1.4.13. Let ϕ : G→ H be a group homomorphism. The image imϕ
and kernel kerϕ are subgroups of H and G respectively.

Proof. Indeed, imϕ = ϕ(G) (and G ≤ G) and kerϕ = ϕ−1{1H} (and {1H} ≤
H).

Example 1.4.14. In the previous homework you had to directly show that
the set H = {A ∈ GLn(R) | detA = ±1} is a subgroup of GLn(R). Using
the previous lemma, this is immediate. Indeed, the determinant is a group
homomorphism det : GLn(R) → R∗, and {1,−1} = µ2 ≤ R∗. Thus the above
set H is a subgroup of GLn, being the preimage H = det−1 µ2.

As an example of the properties of group homomorphism, let us prove the
following extremely useful result.

Lemma 1.4.15. Let G and H be groups and let ϕ : G→ H be a group homo-
morphism. Then ϕ is injective if and only if kerϕ = {1G}.

Proof. First, let us assume that ϕ is injective. Thus, the preimage of every
element is at most one element (by definition). Since we have already proven
that ϕ(1G) = 1H , it must be kerϕ = ϕ−1{1H} = {1G}.
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Second, let kerϕ = {1G}. We need to show that, for any g, g′ ∈ G, if g 6= g′,
then ϕ(g) 6= ϕ(g′), or, equivalently, if ϕ(g) = ϕ(g′), then g = g′. Let us assume
that ϕ(g) = ϕ(g′). Then

1H = ϕ(g)−1ϕ(g′) = ϕ(g−1)ϕ(g′) = ϕ(g−1g′),

so that g−1g′ ∈ kerϕ = {1G}. But then g−1g′ = 1G, implying that g = g′.

Definition 1.4.16. Let G and H be groups and let ϕ : G → H be a group
homomorphism. We say that ϕ is an isomorphism if there exists a group ho-
momorphism ψ : H → G such that ϕ ◦ ψ = idH and ψ ◦ ϕ = idG. We say
that ψ is the inverse homomorphism of ϕ, and we denote it by ϕ−1. We say
tha two groups G and H are isomorphic, and we write G ∼= H, if there is an
isomorphism ϕ : G→ H, or, equivalently, ψ : H → G.

Exercise 1.15 ([Fra], exercise 4.10). We already know that all cyclic groups are
isomorphic; thus 〈n〉 = nZ is isomorphic to Z for any n 6= 0. Can you show it
by explicitly exhibiting two homomorphisms nZ→ Z and Z→ nZ, one inverse
of each other?

Food For Thought 1.16 ([Fra], exercise 4.9). Show that the three groups
(R,+), (R∗, ·) and (S1, ·) are not (two by two) isomorphic.

Theorem 1.4.17. Let G and H be groups and let ϕ : G → H be a group
homomorphism. The following are equivalent:

(a) ϕ is an isomorphism;

(b) ϕ is bijective;

(c) imϕ = H and kerϕ = {1G}.

Proof. By definition, ϕ is surjective if and only if imϕ = ϕ(G) = H. We
proved that ϕ is injective if and only if kerϕ = {1G}. Therefore (b) and (c) are
equivalent. We only need to show that (a) is equivalent to (b) or (c).

Let us prove that (a) implies (b). Let ψ : H → G be a group homomorphism
such that ϕ ◦ ψ = idH and ψ ◦ ϕ = idG (ϕ is an isomorphism). To see that ϕ is
injective let g, g′ ∈ G, and let ϕ(g) = ϕ(g′). Then ψ(ϕ(g′)) = ψ(ϕ(g)). On the
other hand, ψ(ϕ(g)) = (ψ ◦ϕ)(g) = idG(g) = g, and similarly ψ(ϕ(g′)) = g′. So
we have the chain of equalities

g = ψ(ϕ(g)) = ψ(ϕ(g′)) = g′,

showing that g = g′. To see that ϕ is surjective, let h ∈ H. If g = ψ(h), I claim
that ϕ(g) = h (thus showing that for any h there is g ∈ G such that ϕ(g) = h).
Indeed, ϕ(g) = ϕ(ψ(h)) = (ϕ ◦ ψ)(h) = idH(h) = h.

Finally, let us show that (b) implies (a). In order to show that ϕ is an
isomorphism we have to explicitly exhibit a group homomorphism ψ : H → G
such that ϕ ◦ ψ = idH and ψ ◦ ϕ = idG. We will contract such ψ. Let h ∈ H;
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since ϕ is bijective there exists a unique g ∈ G such that ϕ(g) = h. So we can
safely define the function ψ : H → G as the one sending each h ∈ H to the
unique g ∈ G such that ϕ(g) = h. Let h, h′ ∈ H, and let g = ψ(h), g′ = ψ(h′).
Note that, since ϕ is a homomorphism and by construction of ψ,

ϕ(gg′) = ϕ(g)ϕ(g′) = hh′.

Thus, by construction of ψ, ψ(hh′) must be gg′, the only element of G mapped
to hh′ by gg′ (ϕ is injective). Hence

ψ(hh′) = gg′ = ψ(h)ψ(h′).

Therefore ψ is a homomorphism. Finally, for every g ∈ G, ψ(ϕ(g)) is the (only)
element of G mapped to ϕ(g) by ϕ, that is g. Thus (ψ ◦ ϕ)(g) = ψ(ϕ(g)) =
g = idG(g). Since this is true for every g ∈ G, ψ ◦ ϕ = idG. Similarly, for
every h ∈ H, ψ(h) is the element of G mapped to h by ϕ, that is ϕ(ψ(h)) = h.
Thus (ϕ ◦ ψ)(h) = ϕ(ψ(h)) = h = idH(h). Since this is true for every h ∈ H,
ϕ ◦ψ = idH . Hence ψ is the inverse homomorphism of ϕ, implying that ϕ is an
isomorphism.

Corollary 1.4.18. Let G and H be groups, and let ϕ : G→ H be an injective
group homomorphism. Then G ∼= imϕ.

Proof. Since H ′ = imϕ is a subgroup of H, and for each g ∈ G, ϕ(g) ∈ H ′ =
imϕ by definition, ϕ restrict to a function which we will denote by ϕ′ : G→ H ′.
On each element of G ϕ′ is indeed ϕ, we simply restricted the target: for each
g ∈ G, ϕ′(g) = ϕ(g). Since ϕ is a group homomorphism, so is ϕ′. Moreover
kerϕ′ = kerϕ = {1} (by hypothesis) and imϕ′ = imϕ = H ′. Therefore ϕ′ is an
isomorphism between G and H ′ = imϕ.

Corollary 1.4.19 (Conjugation). Let G be any group. If g ∈ G let ig : G→ G
be the function defined by ig(h) = ghg−1. For every g ∈ G, ig is an isomor-
phism.

Proof. Let us show that, for every g ∈ G, ig is a homomorphism. For any
h, h′ ∈ G,

ig(hh
′) = g(hh′)g−1 = ghh′g−1 = gh1h′g−1 = gh(g−1g)h′g−1 =

= (ghg−1)(gh′g−1) = ig(h)ig(h
′),

so ig is a homomorphism.
Let h ∈ G an let us consider g−1hg ∈ G; then

ig(g
−1hg) = g(g−1hg)g−1 = (gg−1)h(gg−1) = 1h1 = h.

Thus im ig = G (ig is surjective).
Finally, let k ∈ ker ig. Then 1 = ig(k) = gkg−1; multiplying the left most

and right most sides of this identity on the left by g−1 and on the right by g we
obtain

k = (g−1g)k(g−1g) = g−1(gkg−1)g = g−1ig(k)g = g−11g = 1,

showing that ker ig = {1}.
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Remark 1.4.20. Alternatively, after showing that ig is a homomorphism for
every g ∈ G, we could have shown that it is an isomorphism by producing an
inverse homomorphism (as in the definition of isomorphism). You can check that
the inverse homomorphism of ig is ig−1 , that is, that ig−1 ◦ ig = ig ◦ ig−1 = idG.

Definition 1.4.21. Let G be a group. For any g ∈ G, the isomorphism ig
defined by ig(h) = ghg−1 is called conjugation.

Food For Thought 1.17. Let H be the following generalization of C. Recall
that C = R + iR, where i2 = −1. The idea is to define something similar to C,
but with a root of −1 for each vector~ı, ~ and ~k (and with the product working
like the vector product). We define H = R + iR + jR + kR, with the relations
i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i and ik = −j, and
the rest is exactly like the vector product. For example

(3 + 2i) · (i+ 2j) = 3 · i+ (2i) · i+ 3 · (2j) + (2i) · (2j) = 3i+ 2(i2) + 6j + 4ij =

= 3i− 2 + 6j + 4k = −2 + 3i+ 6j + 4k.

These are called the Quaternions. It is not obvious that H∗ = H− {0} is a non
abelian group with respect to this product, and C∗ < H∗, identifying C = R+iR.
You can assume it for this problem (or try to prove it, if you have some time).
Let : C → C be the usual complex conjugation: if z = x + iy, with x, y ∈ R,
z = x− iy. Recall that z1 · z2 = z1 · z2 (if you did not know it, you can check it
on some cases). Thus the conjugation induces a homomorphism : C∗ → C∗.
Show that the conjugation is indeed a conjugation in the sense of the above
definition, that is, there exists an element g ∈ H∗ such that, for any z ∈ C∗,
z = ig(z) = gzg−1. Hint: try g = j.

Homework. From section 13, do exercises 8, 9, 13, 49. From section 4, do
exercise 40. In addition, do the following problem. Fix n ≥ 2. Show that the
function Φ : Z/n → µn, Φ(r) = e2πir/n is a group isomorphism (the result is
trivially true for n = 1).

1.5 Permutations

([Fra], Section 8 )

The next construction is going to be the main example as non-abelian group
(and actually we will see that all groups are of this form).

Definition 1.5.1. Let A be a set. A permutation of A is a bijection σ : A →
A. The collection of all permutations on A is denoted by SA or SA. If A =
{1, . . . , n}, the set of permutations is denoted by Sn or Sn.

Intuitively, a permutation is a rearranging of the elements of the set. For
example, if A = {1, 2, 3, 4, 5}, a permutation can be

1 7→ 2, 2 7→ 5, 3 7→ 3, 4 7→ 1, 5 7→ 4.
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Lemma 1.5.2. Let A be a set; SA is closed under the operation of composition.

Proof. If σ, τ ∈ SA, then σ : A → A and τ : A → A, so we can compose
τ ◦σ : A→ A. Moreover, as the composition of two bijections is still a bijection,
τ ◦ σ ∈ SA.

Theorem 1.5.3. Let A be a set. With respect to the composition, SA is a
group.

Proof. This is [Fra, 8.5].

Definition 1.5.4. A group G is called a group of permutation if it is a subgroup
G ≤ SA for some set A.

The set we consider does not really matter; it only matters the cardinality.

Lemma 1.5.5. Let A and B be two sets admitting a bijection f : A→ B. Then
SA ∼= SB.

Proof. More precisely, we will show that f induces an isomorphism Sf : SA →
SB . Since f : A→ B is a bijection, there is a bijection f−1 : B → A such that
f−1 ◦ f = idA and f ◦ f−1 = idB . Let σ ∈ SA; recall that, by definition, σ is
a bijection σ : A → A. Thus f ◦ σ ◦ f−1 : B → B is still a bijection (it is a
composition of bijections). We define Sf (σ) = f ◦ σ ◦ f−1.

If σ, τ ∈ SA,

Sf (στ) = Sf (σ ◦ τ) = f ◦ σ ◦ τ ◦ f−1 = f ◦ σ ◦ idA ◦ τ ◦ f−1 =

= f ◦ σ ◦ f−1 ◦ f ◦ τ ◦ f−1 = Sf (σ) ◦ Sf (τ) =

= Sf (σ)Sf (τ).

It is not hard to check that Sf has an inverse morphism, (Sf )−1 = Sf−1 , and
thus Sf is an isomorphism.

Exercise 1.18. Check that (Sf )−1 = Sf−1 .

We will mostly be interested in Sn = SIn . There are two ways of writing a
permutation. Let, for example, σ ∈ S5 sending

1 7→ 3, 2 7→ 1, 3 7→ 2, 4 7→ 5, 5 7→ 4.

I can write σ as

σ =

(
1 2 3 4 5
3 1 2 5 4

)
(each column is telling you where each element is going). We notice that this
permutation is actually permuting the elements {1, 2, 3} and {4, 5} indepen-
dently. On {1, 2, 3}, it is sending 1 7→ 3, 2 7→ 1, 3 7→ 2. If we write is as a
chain, we see that 1 7→ 3 7→ 2 7→ 1 (and then the loop starts again). Similarly
on {4, 5}, σ is doing 4 7→ 5 7→ 4. So we can write σ as

σ = (1 3 2)(4 5),
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with the understanding that everything which is between parentheses is a loop.
Similarly, if τ is the permutation described at the beginning of this section as

1 7→ 2, 2 7→ 5, 3 7→ 3, 4 7→ 1, 5 7→ 4,

it can be written as

τ =

(
1 2 3 4 5
2 5 3 1 4

)
or

τ = (1 2 5 4)(3) = (1 2 5 4)

(we usually omit the loop of just one element, as it is not really doing anything).

Definition 1.5.6. A permutation of the form (a1 . . . ak) ∈ Sn (with no repeti-
tion among the ai) is called a cycle.

The first notation makes the computations and finding the inverse easier.
The second notation is more compact. For example, if σ and τ are the two
permutations described above, to compute στ = σ ◦ τ it is enough to juxtapose
vertically the two permutations, with τ before σ:

στ =

1 2 3 4 5
2 5 3 1 4
1 4 2 3 5

 =

(
1 2 3 4 5
1 4 2 3 5

)
.

Equivalently you can follow where each element goes in the product, but work-
ing from right to left:

στ =

(
1 2 3 4 5
3 1 2 5 4

)(
1 2 3 4 5
2 5 3 1 4

)
=

(
1 2 3 4 5
1 4 2 3 5

)
.

The reason for this apparently weird rule of multiplication is just out of two
discording conventions in mathematics. On the one hand, we read mathematics
from left to right, and, when writing στ , somehow we expect σ to come first. On
the other hand, when dealing with composition of functions we read from right
to left, so that (σ ◦ τ)(a) = σ(τ(a)), and τ precedes σ. Since the multiplication
for permutations is composition as functions, we have to read from right to left.
To find the inverse of a permutation written with the first notation, it is enough
to read it from bottom to top. In the previous example,

σ−1 =

(
3 1 2 5 4
1 2 3 4 5

)
=

(
1 2 3 4 5
2 3 1 5 4

)
.

You can also compute products and inverses with the second notation. We
will just discuss the composition. As in the case of the first notation, to compute
the composition, simply juxtapose the two permutations and read where each
elements goes right to left, and write them as cycles of elements. For example

στ = (1 3 2)(4 5)(1 2 5 4) = (1)(2 4 3)(5) = (2 4 3)

(note that indeed we obtain the same permutation, but with a different nota-
tion).
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Example 1.5.7. If n = 1, S1 = {id}, as there is only one bijection {1} → {1}.
If n = 2, S2 = {id, (1 2)}, that is, the only bijections on {1, 2} are the identity or
switching 1 and 2. If n = 3, S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, with the
multiplication as describe above. We have that, for example, (1 2)2 = id, while
(1 2 3)2 = (1 3 2) = (1 2 3)−1 and that (1 2 3)(1 2) = (1 3), (1 2)(1 2 3) = (2 3) and
(1 2)(1 3) = (1 3 2). This group is not abelian. With a little bit of work we can
check that the only subgroups of S3 are:

(a) {id},

(b) {id, (1 2)} = 〈(1 2)〉,

(c) {id, (1 3)} = 〈(1 3)〉,

(d) {id, (2 3)} = 〈(2 3)〉,

(e) {id, (1 2 3), (1 3 2)} = 〈(1 2 3)〉 = 〈(1 3 2)〉,

(f) S3.

Although, as observed above, S3 is not abelian, it has subgroups isomorphic to
Z/2 and Z/3, which are abelian.

Theorem 1.5.8 (Caley’s theorem). Every group is isomorphic to a group of
permutations. Moreover, if G is finite, with |G| = n, then G is isomorphic to a
subgroup of Sn.

Remark 1.5.9. This theorem is not as powerful as it appears. Giving us a
natural way of thinking of any finite group as a subgroup of a group of per-
mutations, which is a group we fully understand, it would seem to suggest an
approach for studying its behavior as group. However, the groups Sn are very
complicated groups (as you will learn if you study Galois Theory), so thinking
of a finite group as a subgroup of Sn may not really help much. Moreover,
the order of Sn grows extremely fast, making these groups not at all good for
computations. If |G| = n, the theorem provides us a way of embedding G into
Sn, which has n! elements, and these may be too many permutations to handle
for this approach to be worth it.

Proof. This is [Fra, 8.16].

Homework. From section 8 do problems 1, 4, 16, 20, 46.

1.6 Direct products

([Fra], Section 11 )

Definition 1.6.1. Let S1, . . . , Sn be sets. The Cartiesian product of S1, . . . , Sn,
denoted by S1× . . .×Sn or

∏n
i=1 Si is the set of all ordered n-tuples (ai, . . . , an),

where si ∈ Si.
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Example 1.6.2. The set R×R is the set of all pairs of real numbers, which is
R2 (the plane). Similarly R×R×R is the space R3. The set Z×Z is the set of
all pairs of integer numbers (which we can think of as all the points in R2 with
integer coordinates).

Remark 1.6.3. If all the sets are finite, which Si having mi elements (for each
i), then the product S1 × . . .× Sn has m1 · . . . ·mn elements.

Remark 1.6.4. If we consider G1, . . . , Gn to be groups, and we choose

(ai, . . . , an), (b1, . . . , bn) ∈ G1 × . . .×Gn,

we can multiply a1b1, . . . , anbn in each group. Thus the element (a1b1, . . . , anbn)
will still be an element of G1 × . . .×Gn

Definition 1.6.5. Let G1, . . . , Gn be groups. For (ai, . . . , an), (b1, . . . , bn) ∈
G1×. . .×Gn, we can define a product on G1×. . .×Gn component by component:

(a1, . . . , an)(b1, . . . , bn) = (a1b1, . . . , anbn).

Proposition 1.6.6. Let G1, . . . Gn be groups. With the multiplication compo-
nent by component, the set G1 × . . .×Gn is a group.

Proof. This is [Fra, 11.2].

Definition 1.6.7. The above construction is called the direct product of the
groups G1, . . . , Gn.

Example 1.6.8. Let us look again at R × R × R (or similarly R × R), with
its group group structure. We already saw that, as sets, R × R × R ∼= R3. Let
(x1, y1, z1), (x2, y2, z2) ∈ R× R× R. Then

(x1, y1, z1) + (x2, y2, z2) = (x1 + y1, x2 + y2, z1 + z2),

(sum component by component), which is the usual structure of vectors. Thus
the direct product of R with itself three times is noting but the group of 3-
dimensional vectors.

Example 1.6.9. The group Z/2 × Z/3 has 2 · 3 = 6 elements: (0, 0), (0, 1),
(0, 2), (1, 0), (1, 1), (1, 2). This group is actually cyclic. Let us compute 〈(1, 1)〉.
We have

〈(1, 1)〉 = {(1, 1), (0, 2), (1, 0), (0, 1), (1, 2), (0, 0)} = Z/2× Z/3.

Since there is only one cyclic group of order 6, up to isomorphism, we deduce
that Z/2× Z/3 ∼= Z/6.

Example 1.6.10. The group Z/3 × Z/3 is not cyclic. If that were the case,
then it would be isomorphic to Z/9 (they both have 9 elements). However,
let (a, b) ∈ Z/3 × Z/3. Then 3(a, b) = (3a, 3b) = (0, 0). So, each element in
Z/3×Z/3 added to itself 3 times gives the identity (each element has order 3).
This is not the case in Z/9 (for example 3 1 = 3 6= 0 is Z/9).
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Exercise 1.19. In [Fra, exercise 4.8] the group

(Z/8)× = {a ∈ Z/8 | ∃ b ∈ Z/8 such that ab = 1}

is introduced. Show that (Z/8)× ∼= Z/2× Z/2.

Definition 1.6.11. Let G be a group and let a ∈ G. The order of a, denoted
by ord(a), is the smallest positive integer m such that am = 1. If there is no
such integer, we say that a has infinite order, and we write ord(a) =∞.

Exercise 1.20. Let G = Z/12. What are the following orders: ord(0), ord(1),
ord(2), ord(3), ord(8)? What is the ord(2) in Z?

Remark 1.6.12 ([Fra], exercise 4.34). In the first homework you showed that,
if G is a finite group, for each a ∈ G there exists a positive integer m such that
am = 1. Therefore each element in a finite group has finite order.

Proposition 1.6.13. The group Z/m × Z/n is cyclic if and only if m and n
are coprime, in which case it is isomorphic to Z/mn.

Proof. This is [Fra, 11.5].

Corollary 1.6.14. The group
∏n
i=1 Z/mi is cyclic and isomorphic to Z/(m1 ·

. . . ·mn) if and only if the numbers mi are two by two coprime.

Example 1.6.15. As application of this result, we see that we can write Z/72 ∼=
Z/8× Z/9.

Definition 1.6.16. Let r1, . . . , rn be positive integers. The least common mul-
tiple, denoted by lcm(r1, . . . , rn) is the smallest positive integer divisible by
r1, . . . , rn.

Example 1.6.17. The least common multiple of 6 and 4 is lcm(6, 4) = 12.

Proposition 1.6.18. Let (a1, . . . , an) ∈
∏n
i=1Gi. If each ai is of finite order

ord(ai) = m1, then (a1, . . . , an) has finite order

ord(a1, . . . , an) = lcm(m1, . . . ,mn).

Proof. This is [Fra, 11.9].

The next result is one of the most important results in group theory. Unfortu-
nately a proof of it requires more machinery that the one we can develop in this
course (if we had a semester, though, we could).

Theorem 1.6.19 (Structure theorem for finitely generated abelian groups).
Every finitely generated abelian group is isomorphic to a direct product of cyclic
groups in the form

Z/(pe11 )× Z/(pe22 )× . . .× Z/(penn )× Z× . . .× Z.
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Corollary 1.6.20 (Structure theorem for finite abelian groups). Every finite
abelian group is isomorphic to a direct product of cyclic groups in the form

Z/(pe11 )× Z/(pe22 )× . . .× Z/(penn ).

The last result about direct product is the so-called universal property of
direct product.

Remark 1.6.21. We will state and prove the next results in the case of a direct
product of two groups, but similar statements are true for an arbitrary finite
direct product.

Lemma 1.6.22. Let G1 and G2 be groups. The two functions ι1 : G1 →
G1 × G2, ι1(g) = (g, 1), and ι2 : G2 → G1 × G2, ι2(g) = (1, g), are injective
homomorphisms.

Proof. We will only prove this result for ι1 (the proof is the same for ι2). If g, h ∈
G1, then ι1(gh) = (gh, 1) = (g, 1)(h, 1) = ι1(g)ι1(h); thus ι1 is a homomorphism.
To prove injectivity, it is enough to check the kernel:

ker ι1 = {g ∈ G | ι1(g) = 1G1×G2
} = {g ∈ G | ι1(g) = (1, 1)} =

= {g ∈ G | (g, 1) = (1, 1)} = {1}.

Lemma 1.6.23. Let G1 and G2 be groups. The two functions π1 : G1 ×G2 →
G1, π1(g1, g2) = g1, and π2 : G1 × G2 → G2, π2(g1, g2) = g2, are surjective
homomorphisms.

Proof. As for the previous lemma, we will only show this result for π1. Let
(g1, g2), (h1, h2) ∈ G1 ×G2. Then

π1
(
(g1, h1)(g2, h2)

)
= π1(g1h1, g2h2) = g1h1 = π1(g1, g2)π1(h1, h2).

To see the surjectivity, notice that each g ∈ G1 is the image of (g, 1) ∈ G1×G2:
g = π1(g, 1).

Theorem 1.6.24 (Universal property of direct products). Let G1 and G2 be
two groups. For each group K and group homomorphisms f1 : K → G1 and
f2 : K → G2 there exists a unique homomorphism f : K → G1 ×G2 such that
π1 ◦ f = f1 and π2 ◦ f = f2. In diagram,

K
f1 //

f2

��

∃! f

$$

G1

G2 G1 ×G2.π2

oo

π1

OO

Proof. We will prove the theorem in the following order:
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(a) produce a function f : K → G1 ×G2;

(b) show that, for such f , π1 ◦ f = f1 and π2 ◦ f = f2;

(c) show that such f is a homomorphism;

(d) show that f is the unique map satisfying (a)-(c).

Let us start with the proof.

(a) Since f1 : K → G1 and f2 : K → G2, for each a ∈ K we can define

f(a) = (f1(a), f2(a)) ∈ G1 ×G2.

(b) For each a ∈ K,

(π1 ◦ f)(a) = π1(f(a)) = π1(f1(a), f2(a)) = f1(a).

Since this is true for all a ∈ K, π1 ◦ f = f1. Similarly, π2 ◦ f = f2.

(c) For a, b ∈ K,

f(ab) =
(
f1(ab), f2(ab)

)
=
(
f1(a)f1(b), f2(a)f2(b)

)
since both f1 and f2 are group homomorphisms. Since the operation on
G1 ×G2 is component by component,(

f1(a)f1(b), f2(a)f2(b)
)

=
(
f1(a), f2(a)

)(
f1(b), f2(b)

)
,

which is f(a)f(b) by definition of f . Putting all these equalities together,

f(ab) =
(
f1(ab), f2(ab)

)
=
(
f1(a)f1(b), f2(a)f2(b)

)
=

=
(
f1(a)f1(b), f2(a)f2(b)

)
=
(
f1(a), f2(a)

)(
f1(b), f2(b)

)
=

= f(a)f(b),

shows that f is a group homomorphism.

(d) Let g be a function satisfying (a)-(c), that is g : K → G1 ×G2 is a group
homomorphism satisfying (b). For each a ∈ K, g(a) ∈ G1 × G2; thus it
is a pair of elements, one in G1 and one in G2, by definition of G1 ×G2.
So we can write g(a) = (g1(a), g2(a)) for some functions g1 : K → G1

and g2 : K → G2 (not necessarily homomorphisms). Since π1 ◦ g = f1
(condition (b)), for every a ∈ K,

f1(a) = (π1 ◦ g)(a) = π1(g(a)) = π1
(
g1(a), g2(a)

)
= g1(a).

Since this it true for all a ∈ K, g1(a) = f1(a). Similarly, g2(a) = f2(a).
Thus, for every a ∈ K, g(a) = (g1(a), g2(a)) = (f1(a), f2(a)) = f(a).
Since this is true for all a ∈ K, g = f .

Remark 1.6.25. In the proof of (d) we do not need, and did not use, that g
and f are homomorphisms.

Homework. From section 11, do exercises: 9, 20, 50, 51.
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Chapter 2

Quotient group (factor
group)

2.1 Partitions

([Fra], Section 0 )

Definition 2.1.1. A partition on a set X is a way of subdividing X into subsets
Xi’s such that X =

⋃
iXi, Xi 6= ∅ and, if i 6= j, Xi ∩Xj = ∅. Each Xi is called

a cell.
Let X =

⋃
iXi be a partition. Each element x ∈ X belongs to exactly one

cell of the partition (by definition). We denote by x the cell x = Xi such that
x ∈ Xi.

Example 2.1.2. For example R =
⋃
n∈Z[n, n + 1) is a partition. Also R =⋃

x∈R{x} is a partition.

Example 2.1.3. Let X = {1, 2}. The possible partitions of X are

(a) X = {1, 2};

(b) X = {1} ∪ {2}.

Example 2.1.4. The possible partitions of X = {1, 2, 3} are

(a) X = {1, 2, 3};

(b) X = {1} ∪ {2, 3};

(c) X = {2} ∪ {1, 3};

(d) X = {3} ∪ {1, 2};

(e) X = {1} ∪ {2} ∪ {3}.
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Example 2.1.5. Dividing the integers in even and odd numbers is a partition.

Definition 2.1.6. A relation R on a set X is a subset of X×X. If (x, y) ∈ R,
we will write xR y.

Remark 2.1.7. Since an element of X×X is a pair of elements of X, a relation
(in the mathematical sense) is simply a relation (in the usual sense) between
two elements in X.

Example 2.1.8. Let X = R, and let us consider ≤. This is a relation deter-
mined by the subset

≤= {(x, y) ∈ R× R |x ≤ y}.

Not all pairs of real numbers are in this subset, only the pairs (x, y) where the
first number is less or equal than the second one. From this point of view, we
say that a number x is less or equal than a number y if and only if the pair
(x, y) belongs to the above subset of R× R.

Example 2.1.9. On the real numbers = is also a relation, determined by the
subset

{(x, y) ∈ R× R |x = y} = {(x, x) ∈ R× R}.

Definition 2.1.10. A relation R on a set X is an equivalence relation if it
satisfies the following three properties:

(a) for all x ∈ X, xR x ( reflexive);

(b) for all x, y ∈ X, if xR y, then yR x ( symmetric);

(c) for all x, y, z ∈ X, if xR y and yR z, then xR z ( transitive).

Remark 2.1.11. An equivalence relation is usually denoted by ∼.

Example 2.1.12. On any set X, = is an equivalence relation. For any x ∈ X,
x = x (reflexive); for any x, y ∈ X, if x = y, then y = x; for any x, y, z ∈ X, if
x = y and y = z, then x = z.

Example 2.1.13. On R, ≤ is not an equivalence relation. It is reflexive (x ≤ x)
and transitive (if x ≤ y and y ≤ z then x ≤ z), but not symmetric (x ≤ y does
not imply y ≤ x).

Example 2.1.14. On R, the relation xR y if and only if |x| = |y| is an equiv-
alence relation.

Example 2.1.15. On the set of n × n matrices, the similarity A ∼ B (if
and only if there exists an invertible matrix S such that B = SAS−1) is an
equivalence relation. For the reflexivity, set S = In; if B = SAS−1, then
A = S−1BS (symmetric). Finally, let B = SAS−1 and C = TBT−1; then
C = TBT−1 = TSAS−1T−1 = (TS)A(TS)−1.
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Exercise 2.1. For x ∈ R, let bxc be the biggest integer less or equal than x,
called the integral part. For example b0.5c = 0, bπc = 3, b1c = 1, b−0.5c = −1,
. . . (essentially you take a real number and throw away the decimal part). The
relation xR y if and only if bxc = byc is an equivalence relation.

Lemma 2.1.16. Let X be a set. An equivalence relation R on X induces a
partition X =

⋃
{y | yR x} (counting each repeated set only once).

Conversely, a partition X =
⋃
Xi induces an equivalence relation xR y if

and only if x, y ∈ Xi (in the same Xi).

Proof. Let R be an equivalence relation on X and let us show that the sets

x = {y | y ∼ x}

give a partition of X. Notice that each x is in some of these sets and that
none of these sets are empty since xR x, and thus x ∈ x. It is only left to
show that if two sets are different they do not intersect (thus throwing away the
repetitions we obtain a partition). Equivalently, we will show that, if two such
sets intersects, they are actually the same. Let x and z be two such sets, and
let y ∈ x ∩ z. By definitions of such sets yR x and yR z. Since the relation is
symmetric and yR x, xR y. Since it is transitive and xR y and yR z, xR z.
If now w is any element in x, wR x, we have (again by transitivity) wR z,
which implies that x ⊆ z. By symmetry, switching the role of x and z, z ⊆ x.
Therefore, x = z.

Now let X =
⋃
Xi be a partition, and let R be the relation defined by

xR y if and only if x and y belong to the same Xi. Let us show that this is an
equivalence relation. The reflexivity if tautological: for each x ∈ X, x and x
belong to the same Xi. For every x, y ∈ X, if x and y belong to the same Xi, so
do y and x (again tautological). For any x, y, z ∈ X, if x, y ∈ Xi and y, z ∈ Xi,
then x, z ∈ Xi.

Remark 2.1.17. These two operations (obtaining a partition out of an equiv-
alence relation and obtaining an equivalence relation out of a partition) are
one the inverse of each other, in the sense that if we start with an equivalence
relation R, we use it to obtain a partition, and then we use this partition to
determine an equivalence relation, we recover R, and conversely.

Example 2.1.18. The equivalence relation = on R determines the partition
R =

⋃
x∈R{x}. In each cell there is only one element, since for each x ∈ R there

is only one real number equal to x (namely x itself).

Example 2.1.19. The equivalence relation xR y if and only if |x| = |y| on
R induces the partition R =

⋃
x≥0{x,−x}. The same relation on C induces a

partition of the plane as concentric circles C =
⋃
r≥0{|x| = r}.

Exercise 2.2. The equivalence relation of exercise 2.1 induces the partition
R =

⋃
n∈Z[n, n+ 1).

Homework. From section 0 do exercises 29, 36a.
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2.2 Cosets

([Fra], Section 10 )

Lemma 2.2.1. Let G be a group and let H ≤ G be a subgroup. The relations

a ∼L b if and only if a−1b ∈ H

and
a ∼R b if and only if ab−1 ∈ H

are equivalence relations.

Proof. This is [Fra, 10.1].

Lemma 2.2.2. Let G be a group, let H ≤ G and let a ∈ G. The class of a with
respect to ∼L is aL = aH = {ah |h ∈ H}. Similarly, the class of a with respect
to ∼R is aR = Ha = {ha |h ∈ H}.

Proof. Let us show the result only for aL. Let b ∈ G; b ∈ aL if and only if (by
definition of class) a ∼L b, if and only if a−1b ∈ H. This is true if and only if
there is h ∈ H such that a−1b = h, that is, if and only if there is h ∈ H such
that b = ah (multiplying by a on the right).

Corollary 2.2.3. Let H ≤ G, and let a, b ∈ G. Then aH = bH if and only if
a−1b ∈ H; similarly Ha = Hb if and only if ab−1 ∈ H.

Proof. Indeed, aH = bH if and only if a and b are in the same cell (of the
partition), if and only if a ∼L b if and only if a−1b ∈ H. The proof for the
second statement is the same.

Definition 2.2.4. Let G be a group and let H ≤ G. The subset aH of G is
called the left coset of H containing a; the subset Ha is called the right coset
of H containing a.

If G is abelian and we use the additive notation, the cosets are denoted by
a+H and H + a (respectively).

Example 2.2.5. Let G = Z and H = 2Z. Then the left cosets are

2Z = 0 + 2Z = 2 + 2Z = . . . = {. . . ,−4,−2, 0, 2, 4, 6, . . .}

and
1 + 2Z = 3 + 2Z = −1 + 2Z = . . . = {. . . ,−3,−1, 1, 3, 5, . . .}.

The right cosets are the same, in this case:

2Z = 2Z + 0 = 2Z + 2 = . . . = {. . . ,−4,−2, 0, 2, 4, 6, . . .}

and
2Z + 1 = 2Z + 3 = . . . = {. . . ,−3,−1, 1, 3, 5, . . .}.

28



Lemma 2.2.6. If G is an abelian group and H ≤ G, the partition of G into
left cosets and into right cosets are the same.

Proof. For any a ∈ H, a+H = {a+ h |h ∈ H} = {h+ a |h ∈ H} = H + a (for
all h ∈ H, a+ h = h+ a).

This is not the case if G is not abelian.

Example 2.2.7. Let G = S3 and H = 〈(1 2)〉 = {id, (1 2)}. Then

(1 2 3)H = {(1 2 3), (1 2 3)(1 2)} = {(1 2 3), (1 3)},

while
H(1 2 3) = {(1 2 3), (1 2)(1 2 3)} = {(1 2 3), (2 3)}.

Since the element (1 2 3) is in common, we can also see that the subdivisions in
left and right cosets is different.

Exercise 2.3. Compute the subdivisions in left and right cosets of the previous
example.

Remark 2.2.8. The partition in cosets is only a subdivision of G into subsets,
not into subgroups. With the exception of the coset H, no coset will be a
subgroup.

Lemma 2.2.9. Let H ≤ G, and let a ∈ G. The following are equivalent:

(a) the coset aH is a subgroup;

(b) aH = H;

(c) a ∈ H.

Proof. Homework.

Remark 2.2.10. The same is true for the right cosets.

Lemma 2.2.11. Let H ≤ G. For any g ∈ G, there are bijections H → gH and
H → Hg.

Proof. We will only show this result for H → gH. Let f : H → gH be the map
f(h) = gh. Notice that, since gH = {gh |h ∈ H}, the target of f is indeed gH
and this map is well-defined. Also this map is surjective by definition of gH
(every element in this set is the product of g with an element of H). To see the
the injectivity, let h, h′ ∈ H such that f(h) = f(h′), that is, gh = gh′; by the
cancellation law, h = h′.

Theorem 2.2.12 (Lagrange’s theorem). Let G be a finite group and let H ≤ G.
The order of H is a divisor of the order of G.

Proof. This is [Fra, 10.10].
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Remark 2.2.13. This proof shows that, for a finite group, the number of left
cosets is the same as the number of right cosets. The same is true for infinite
groups (and if we talk about cardinalities).

Corollary 2.2.14. Every group of prime order is cyclic.

Proof. This is [Fra, 10.11].

Corollary 2.2.15. The order of an element in a finite group is a divisor of the
order of the group.

Proof. This is [Fra, 10.12].

Definition 2.2.16. Let H ≤ G. The number of left cosets of H in G is called
the index (G : H) of H in G.

Proposition 2.2.17. Let K ≤ H ≤ G and suppose that (H : K) and (G : H)
are both finite. Then (G : K) is finite and (G : K) = (G : H)(H : K).

Proof. This is [Fra, exercise 10.38].

Homework. From section 10 do problems 31, 38, 40, and prove lemma 2.2.9.

2.3 Normal subgroups and quotient groups

([Fra], Section 14 )

We saw before that the partitions in left or right cosets might differ. We give a
name to the subgroups for which they agree.

Definition 2.3.1. A subgroup H ≤ G is called normal if, for all g ∈ G, gH =
Hg. We denote it by H E G.

Example 2.3.2. If G is abelian, all subgroups are normal (lemma 2.2.6).

Example 2.3.3. The subgroup 〈(1 2)〉 in S3 is not normal (example 2.2.7). The
subgroup H = 〈(1 2 3)〉 ≤ S3 is normal:

(1 2)H = {(1 2), (1 3), (2 3)} = H(1 2), (1 3)H = H(1 3), (2 3)H = H(2 3),

idH = H = Hid, (1 2 3)H = H(1 2 3), (1 3 2)H = H(1 3 2).

Lemma 2.3.4. Let H ≤ G; the following are equivalent:

(a) H is normal;

(b) for each h ∈ H, g ∈ G there exists h′ ∈ H such that ghg−1 = h′, or
equivalently gh = h′g;

(c) for each h ∈ H, g ∈ G, ghg−1 ∈ H (i.e., gHg−1 ⊆ H);

(d) for each g ∈ G, gHg−1 = H.
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Proof. Let us assume (a) and prove (b). Let H E G. Let g ∈ G and h ∈ H.
Then gh ∈ gH = Hg (H is normal); thus there exists h′ ∈ H such that gh = h′g,
that is, ghg−1 = h′ ∈ H.

Clearly part (b) implies part (c): if for each g ∈ G, h ∈ H, there exists
h′ ∈ H such that ghg−1 = h′, then for each g ∈ G, h ∈ H, ghg−1 ∈ H.

Let us prove that (c) implies (d). The hypothesis of (c) is that gHg−1 ⊆ H
for every g ∈ G, and we will make use of this fact. Let us fix g ∈ G. Since we
already know that gHg−1 ⊆ H, it only remains to show the opposite inclusion.
Since, as pointed out, we know that γHγ−1 ⊆ H for every γ ∈ G, this must
be true in particular for γ = g−1, that is g−1Hg ⊆ H. Let h ∈ H; by (c)
g−1hg ∈ H. But then h = g(g−1hg)g−1 ∈ gHg−1. We have shown that
H ⊆ gHg−1, proving that gHg−1 = H.

Finally, let us show that (d) implies (a). For each g ∈ G, h ∈ H, ghg−1 ∈ H,
which means that gh = (ghg−1)g ∈ Hg; hence gH ⊆ Hg. On the other hand,
for each h ∈ H, there exists h′ ∈ H such that gh′g−1 = h, which means that
hg = gh′ ∈ gH; hence Hg ⊆ gH.

Remark 2.3.5. In part (b) of the previous lemma, h′ is usually different from
h.

Lemma 2.3.6. Let ϕ : G→ G′ be a group homomorphism; then kerϕ E G.

Proof. For any g ∈ G and h ∈ kerϕ, ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g)−1 = ϕ(g) · 1 ·
ϕ(g)−1 = ϕ(g)ϕ(g)−1 = 1, so that ghg−1 ∈ kerϕ.

Lemma 2.3.7. Let ϕ : G → G′ be a group homomorphism, let H = kerϕ; for
every a ∈ G,

ϕ−1(ϕ(a)) = {g ∈ G |ϕ(g) = ϕ(a)} = aH = Ha.

Proof. Since H = kerϕ is normal, aH = Ha. The rest is [Fra, 13.15].

We can restate corollary 2.2.3 in the case of normal subgroups (which is
going to be extremely useful).

Corollary 2.3.8. Let H E G and let a, b ∈ H. Then aH = bH if and only if
a−1b ∈ H, if and only if ab−1 ∈ H.

Lemma 2.3.9. Let H E G; for each a, b ∈ G,

(aH)(bH) = (ab)H.

Moreover, the above multiplication is well-defined on cosets by representatives.

Proof. The two sets are

(aH)(bH) = {agbh | g, h ∈ H}

and
abH = {abh |h ∈ H}.
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We need to show the double inclusion. In the first set, we can choose g = 1 ∈ H,
and we have

abH = {abh |h ∈ H} = {a · 1 · bh |h ∈ H} = {agbh | g = 1, h ∈ H} ⊆
⊆ {agbh | g, h ∈ H} = (aH)(bH).

Conversely, let agbh ∈ (aH)(bH). Since H is normal and g ∈ H, there exists
g′ ∈ H such that gb = bg′. Hence (ag)(bh) = a(gb)h = a(bg′)h = (ab)(g′h).
Since g′, h ∈ H and H is a subgroup, g′h ∈ H. Thus, (ag)(bh) = (ab)(g′h) ∈
(abH).

To show the last statement, let us choose different representatives for the
cosets aH and bH; aH = (ah1)H and bH = (bh2)H, with h1, h2 ∈ H. Since
h1 ∈ H is normal, there exists h3 ∈ H such that h1b = bh3. But then

(aH)(bH) = (ah1)H(bh2)H = (ah1)(bh2)H = a(h1b)h2H = a(bh3)h2H =

= (ab)(h3h2)H = abH.

Food For Thought 2.4. A quick proof of the previous result is the following:
for any b, since H is normal, we have bH = Hb; thus aHbH = abHH = abH.
Can you make this proof precise?

Remark 2.3.10. The converse is also true: if the multiplication is well-defined,
H must be normal. A proof is on [Fra, 14.4]. We will give a shorter proof of
this later.

Theorem 2.3.11. Let H E G. The set of left (or right) cosets of H, with the
operation

(aH) · (bH) = (ab)H

is a group.

Proof. The previous lemma shows that (aH) · (bH) is a product on the set of
cosets. We need to show the three properties of a group.

G1 (associativity): Let aH, bH and cH be three cosets, with a, b, c ∈ G. Then

(aH · bH) · cH = (ab)H · cH = ((ab)c)H = (a(bc))H = aH · (bc)H =

= aH · (bH · cH).

G2 (identity): The identity element is 1H = H: for each coset aH, a ∈ G,

aH · 1H = (a · 1)H = aH and 1H · aH = (1 · a)H = aH.

G3 (inverses): For each coset aH, a ∈ G, the inverse element is the coset
a−1H:

aH · a−1H = (aa−1)H = 1H and a−1H · aH = (a−1a)H = 1H.
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Definition 2.3.12. Let H E G. The group of cosets of H, denoted by G/H, is
called the factor group or quotient group.

Example 2.3.13. Let G = Z and H = nZ. Since Z is abelian, nZ is normal
(all subgroups of an abelian group are normal), so we can contract the quotient
group. The most interesting cases are when n ≥ 2. For each m ∈ Z, we have
the coset

m+ nZ = {. . . ,m− n,m,m+ n,m+ 2n, . . .};

if we write m = qn+ r, with 0 ≤ r < n (the division algorithm), we notice that
m − r = qn ∈ nZ, so r and m define the same coset: m + nZ = r + nZ. So
Z/nZ has the n cosets {r + nZ | 0 ≤ r < n}. If r + nZ, s+ nZ ∈ Z/nZ, then

(r + nZ) + (s+ nZ) = (r + s) + nZ;

if r + s ≥ n, we can also represent (r + s) + nZ with (r + s− n)Z. This is the
same product we defined on Z/n. Indeed, Z/nZ = Z/n (hence the notation).

Example 2.3.14. If H = G, then G/H ∼= {1}. If g ∈ G, gG = {gh |h ∈ G} ⊆
G; on the other hand, for any h ∈ G, h = g(g−1h) ∈ gG. Hence gG = G.
Similarly Gg = G. So G is normal gG = G = Gg for any g ∈ G. Since, however,
there is only one coast (namely G itself), G/G has only one element, that is,
G/G = {1G} ∼= {1}, the group with one element.

Example 2.3.15. If H = {1}, G/H ∼= G. For any g ∈ G, g · 1 · g−1 = 1 ∈ H,
proving that H = {1} is a normal subgroup. For any g ∈ G, gH = {gh |h ∈
H} = {g · 1} = {g}. Thus, each element is in a coset on its own. Moreover, if
g, h ∈ G, {g}{h} = (gH)(hH) = (gh)H = {gh}, so the product law on G/{1}
is the same as on G. We have verified that G/{1} ∼= G.

Definition 2.3.16. A group G is called simple if it does not have non-trivial
proper normal subgroups, i.e., if the only normal subgroups are G and {1}.

Example 2.3.17. The group Z/p, with p prime, is simple.

Example 2.3.18. A very important result in group theory say that, for n ≥ 5,
Sn has only one normal subgroup, denoted by An and having n!/2 elements.
Moreover, this subgroup An is simple (again for n ≥ 5).

Food For Thought 2.5. Show that R/Z ∼= S1. What is R/Q?

Homework. From section 14 do exercises 4, 7, 30, 31.

2.4 Isomorphism theorems

([Fra], Section 34 )
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Proposition 2.4.1. Let H E G; there is a (natural) surjective group homo-
morphism γ : G→ G/H, γ(a) = aH, with ker γ = H.

Proof. If a, b ∈ G, γ(a)γ(b) = (aH)(bH) = (ab)H = γ(ab), showing that γ is a
homomorphism. By construction of G/H, γ is surjective. Moreover,

ker γ = {h ∈ G | γ(h) = 1G/H} = {h ∈ G |hH = H} = {h ∈ H} = H.

Remark 2.4.2. The same proof shows that, if the product of cosets aHbH =
abH is well-defined, H must be normal. Indeed, if the product is well-defined,
we can construct the homomorphism γ : G → G/H (the group of cosets) as
above, which will have kernel H. Since a kernel of a homomorphism is always
a normal subgroup, H must be normal.

Lemma 2.4.3. Let ϕ : G → H be a group homomorphism. If N E G, then
ϕ(N) E imϕ. If N E H, then ϕ−1(N) E G.

Proof. Let N E G. Let ϕ(g) ∈ imϕ and ϕ(n) ∈ ϕ(N). Since g ∈ G, n ∈ N and
N is normal, gng−1 ∈ N . Thus ϕ(g)ϕ(n)ϕ(g)−1 = ϕ(gng−1) ∈ ϕ(N).

Let N E H. Let g ∈ G and n ∈ ϕ−1(N). Since ϕ(g) ∈ H, ϕ(n) ∈ N and
N is normal, ϕ(g)ϕ(n)ϕ(g−1) ∈ N . Thus, ϕ(gng−1) = ϕ(g)ϕ(n)ϕ(g−1) ∈ N ,
showing that gng−1 ∈ ϕ−1(N).

Theorem 2.4.4 (Noether correspondence). Let K E G. There is a bijection{
subgroups of G containing K

}
↔
{

subgroups of G/K
}

which sends normal subgroups to normal subgroups.

Proof. Let
SG(K,G) =

{
subgroups of G containing K

}
and

SG(G/K) =
{

subgroups of G/K
}
.

If H ∈ SG(K,G), that is H is a subgroup of G containing K, then γ(H) ≤
G/H, where γ is the quotient homomorphism γ : G → G/K (the image of a
subgroup is a subgroup). So we can define the map Φ : SG(K,G)→ SG(G/K),
Φ(H) = γ(H).

If now H ∈ SG(G/K), that is H ≤ G/K, since the preimage of a subgroup
is a subgroup, the pre image γ−1(H) is a subgroup of G. Moreover, since
1G/K ∈ H, γ−1(H) ⊇ γ−1{1G/K} = ker γ = K, that is, γ−1(H) contains K.
Hence γ−1(H) ∈ SH(K,G), and we can define the function Ψ : SG(G/K) →
SG(K,G), Ψ(H) = γ−1(H).

It is immediate to check that Φ and Ψ are inverses of each other, and therefore
bijections (and you have to do it as homework).

By the previous lemma, if N E G, Φ(N) = γ(N) E im γ = G/K, and if
N E G/K, Ψ(N) = γ−1(N) E G. Hence Φ and Ψ preserve normality.
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Theorem 2.4.5 (Universal property of quotient). Let H E G, and let γ :
G→ G/H. For each group K and group homomorphism ϕ : G→ K such that
H ⊆ kerϕ, there exists a unique group homomorphism ϕ : G/H → K such that
ϕ = ϕ ◦ γ:

G

γ !!

ϕ // K

G/H

∃!ϕ

<<

Proof. We have three things to prove:

(a) construct a function ϕ : G/H → K;

(b) show that ϕ = ϕ ◦ γ;

(c) show that ϕ is a group homomorphism;

(d) show that ϕ is the unique function satisfying (a)-(c).

Let us prove these statements.

(a) Let a, b ∈ H such that aH = bH, that is, a and b are representative of the
same coset; then it must be b = ah, for some h ∈ H. If we apply ϕ on a
and b we see that

ϕ(b) = ϕ(aH) = ϕ(a)ϕ(h) = ϕ(a) · 1 = ϕ(a)

since ϕ is a homomorphism and H ⊆ kerϕ. So we can define a function
ϕ : G/H → K, ϕ(aH) = ϕ(a). This function will be well-defined since,
as shown, ϕ does not depend on the representative of a coset, but only on
the coset itself.

(b) By construction, for each a ∈ G,

(ϕ ◦ γ)(a) = ϕ(γ(a)) = ϕ(aH) = ϕ(a);

since this is true for all a ∈ G, ϕ ◦ γ = ϕ.

(c) Let aH, bH ∈ G/H; then

ϕ
(
(aH)(bH)

)
= ϕ

(
(ab)H

)
= ϕ(ab).

Since ϕ is a group homomorphism, ϕ(ab) = ϕ(a)ϕ(b), so that

ϕ
(
(aH)(bH)

)
= ϕ

(
(ab)H

)
= ϕ(ab) = ϕ(a)ϕ(b) = ϕ(aH)ϕ(bH).

(d) Let ψ be another function satisfying (a)-(c), that is, let ψ : G/H → K be
a group homomorphism such that ψ ◦ γ = ϕ. For any aH ∈ G/H (recall
that aH = γ(a))

ψ(aH) = ψ(γ(a)) = (ψ ◦ γ)(a) = ϕ(a) = ϕ(aH),

by definition of ϕ. Since this is true for all aH ∈ G/H, ψ = ϕ.
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Remark 2.4.6. As in the case of the universal property of the direct product,
in showing uniqueness we did not use that ϕ is a homomorphism.

Theorem 2.4.7 (First isomorphism theorem). Let ϕ : G → H be a group
homomorphism; then

G/ kerϕ ∼= imϕ.

Proof. We can restrict ϕ to a homomorphism ϕ′ : G→ imϕ, ϕ′(a) = ϕ(a). Note
that, by construction, ϕ′ is surjective. Let K = kerϕ; by the universal property
of the quotient, there exists a unique homomorphism ϕ : G/K → imϕ, ϕ◦γ = ϕ′

and γ : G→ G/K, γ(a) = aK. We only need to show that ϕ is an isomorphism.
Since it is a homomorphism, we only have to show that kerϕ = {1G/K} and
that imϕ = imϕ.

Let aK ∈ kerϕ. Then

1 = ϕ(aK) = ϕ(γ(a)) = (ϕ ◦ γ)(a) = ϕ′(a) = ϕ(a);

hence a ∈ kerϕ = K, which implies that aK = K. Therefore we showed that
kerϕ = {K} = {1G/K}.

If h ∈ imϕ, by definition of image there will exists a ∈ G such that h = ϕ(a).
But then

h = ϕ(a) = ϕ′(a) = ϕ(γ(a)) = ϕ(aH),

showing that ϕ is surjective onto imϕ, that is, imϕ = imϕ.

Lemma 2.4.8. Let H ≤ G and let N E G. Then

(a) HN = NH is a subgroup of H;

(b) N E HN .

Proof. (a) Let HN = {hn |h ∈ H, n ∈ N} and NH = {nh |h ∈ H, n ∈ N}.
Let hn ∈ HN ; since N is normal, there exists n′ ∈ N such that hnh−1 =
n′, that is, hn = n′h ∈ NH (multiplying on the left by h). Thus HN ⊆
NH. Similarly, let nh ∈ NH; since N is normal there exists n′ ∈ N such
that h−1nh = h−1n(h−1)−1 = n′, that is nh = hn′ ∈ HN (multiplying
to the right by h). Notice that here we applied the characterization of
normal subgroups to the pair h−1 ∈ H, n ∈ N . Thus NH ⊆ HN . Hence
HN = NH.

Now let us show that HN = NH is a subgroup. By the criterion, it is
enough to show that, for any a, b ∈ HN , ab−1 ∈ HN . Let a, b ∈ HN ;
then a = h1n1, b = h2n2. We want to show that

ab−1 = (h1n1)(h2n2)−1 ∈ HN.

We have that
(h1n1)(h2n2)−1 = h1n1n

−1
2 h−12 .

36



Since both H and N are subgroups, n1n
−1
2 ∈ N and h−12 ∈ H; hence

(n1n
−1
2 )h−12 ∈ NH.

But NH = HN , which means that there exists h3 ∈ H and n3 ∈ N such
that

(n1n
−1
2 )h−12 = h3n3.

Thus

(h1n1)(h2n2)−1 = h1n1n
−1
2 h−12 = h1(n1n

−1
2 h−12 ) = h1h3n3 ∈ HN

(h1h3 ∈ H since H is a subgroup).

(b) Since 1 ∈ H, N = {n |n ∈ N} = {1 ·n | 1 ∈ H, n ∈ N} ⊆ {hn |h ∈ H, n ∈
N} = HN , that is N is contained in HN . Since N is a subgroup of G and
so is HN , N ≤ HN . Finally, if k ∈ HN and n ∈ N , since N is normal in
G and k is an element of G, knk−1 ∈ N . Hence N E HN .

Theorem 2.4.9 (Second isomorphism theorem). Let H ≤ G and let N E G;
then

H/(N ∩H) ∼= HN/N.

Proof. Let ϕ : H → HN/N , ϕ(h) = hN , the coset in HN/N of the element
h = h · 1 ∈ HN . We will show that (a) ϕ is a homomorphism, (b) that it is
surjective and (c) that kerϕ = N ∩H.

(a) Let h, h′ ∈ H; then

ϕ(h)ϕ(h′) = (hN)(h′N) = (hh′)N = ϕ(hh′),

showing that ϕ is a homomorphism.

(b) First let us show that H ∩ N ⊆ kerϕ. Let n ∈ H ∩ N ; ϕ(n) = nN = N
(since n ∈ N). Hence n ∈ kerϕ. Second let us show that kerϕ ⊆ H ∩N .
Since kerϕ ⊆ H, we only need to show that kerϕ ⊆ N . Let n ∈ kerϕ;
then ϕ(n) = 1HN/N = N , but ϕ(n) = nN . Hence nN = N , which implies
that n ∈ N .

(c) Let us show surjectivity. The generic element of HN/N is of the form
(hn)N with h ∈ H, n ∈ N . Then ϕ(h) = hN = (hn)N (since n ∈ N , h
and hn define the same coset of N). Thus ϕ is surjective.

By the first isomorphism theorem and (a)-(c),

H/(H ∩N) = H/ kerϕ ∼= imϕ = HN/N.
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Remark 2.4.10. In the previous result we showed that H ∩ N = kerϕ, and
therefore it must be a normal subgroup of H. In the homework you will have
to show this fact directly (using the definition of normal subgroup).

Theorem 2.4.11 (Third isomorphism theorem). Let K,H E G and K ≤ H;
then

G/K

H/K
∼= G/H.

Remark 2.4.12. Notice that, since K is normal in G and is a subgroup of H,
K is normal in H; thus the quotient H/K makes sense. To be more precise,
the quotient H/K is the subgroup of G/K corresponding to H via the Noether
correspondence. Indeed H/K = γK(H), where γK : G→ G/K, γK(g) = gK, is
the quotient homomorphism.

Proof. Let γH : G→ G/H, γH(g) = gH, and γK : G→ G/K, γK(g) = gK, be
the quotient homomorphisms. Since K ⊆ ker γ = H, by the universal property
of quotient (applied to G/K) there exists a group homomorphism γH : G/K →
G/H, γH = γH ◦ γK . Let rename γH = ϕ. The relation γH = ϕ ◦ γK means
that, for each g ∈ G,

ϕ(gK) = ϕ(γK(g)) = (ϕ ◦ γK)(g) = γH(g) = gH.

Hence the above map is a well-defined group homomorphism ϕ : G/K → G/H,
ϕ(gK) = gH.

We will now prove that ϕ is surjective. Let gH ∈ G/H; if we consider the
element gK ∈ G/K (same g) and we apply ϕ., we will obtain ϕ(gK) = gH,
showing subjectivity.

Let us compute kerϕ. Let hK ∈ kerϕ; then hH = ϕ(hK) = 1G/H = H,
which implies h ∈ H. Hence, if the coset hK is in kerϕ, h ∈ H, which means
that hK is in the subgroup H/K = γK(H) ≤ G/K (corresponding to H via
the Noether correspondence as in the remark). Conversely, if hK ∈ H/K, it
must be h ∈ H; but then ϕ(hK) = hH = H, since h ∈ H, which shows that
hK ∈ kerϕ. Therefore kerϕ = H/K.

By the first isomorphism theorem

G/K

H/K
=
G/K

kerϕ
∼= imϕ = G/H.

Homework. From section 34 do exercises 7, 9. Moreover check that Φ and Ψ
in the Noether correspondence are inverses of each other.
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Chapter 3

Sylow’s theorems

3.1 Group actions

([Fra], Section 16 )

Definition 3.1.1. Let X be a set and G be a group. An action of G on X is a
map ∗ : G×X → X, for which we will use the notation g.x = ∗(g, x) such that

A1: 1.x = x for all x ∈ X;

A2: for all x ∈ X, g, h ∈ G, g.(h.x) = (gh).x.

If X is a set with an action of a group G we will say that X is a G-set (or
G-torsor).

Essentially a group action of G on a set X is a way, for each element g ∈ G, to
shuffle around the elements of X. This will be more precise later.

Example 3.1.2. Let X be a set, and let us consider the group SX . Each
element σ ∈ SX is a bijection σ : X → X; thus we can say that σ acts on some
element by sending it to σ(x), that is, σ.x = σ(x).

We can verify that this defines an action. The identity 1 of SX is the identity
id, so 1.x = id.x = id(x) = x, for all x ∈ X. Also, the multiplication in SX is
defined by composition, so, if σ, τ ∈ SX and x ∈ X,

(στ).x = (στ)(x) = (σ ◦ τ)(x) = σ(τ(x)) = σ(τ.x) = σ.(τ.x).

Example 3.1.3 (Groups of symmetries). Let us fix n ≥ 3. Let Pn be a regular
n-gon in the plane (centered at the origin). We define by Dn the group of
symmetries of Pn, that is, the group of transformations of the plane which
sends Pn to Pn.

For example, when n = 3, D3 is the group of maps of the plane sending an
equilateral triangle onto itself. These can be rotations by 120 or 240 degrees or
symmetries with respect to any of the axes. This is explained in [Fra, 8.7]. By
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describing where each vertex of the triangle is mapped, we obtain an isomor-
phism D3

∼= S3. However, an element of D3 is acting on the entire triangle and
sending each point of the triangle to another point of the triangle. The triangle
P3 is a D3-set.

When n = 4, we are describing the set of isometries of a square, and this is
describe in [Fra, 8.10]. As before, P4 is a D4-set.

Proposition 3.1.4. Let X be a G-set. For each g ∈ G, the function σg : X →
X, σg(x) = g.x, is a permutation of X. Moreover, the map Σ : G → SX ,
Σ(g) = σg, is a group homomorphism such that Σ(g)(x) = g.x (for all g ∈ G,
x ∈ X).

Remark 3.1.5. This means that for a G-set X, each element g ∈ G acts on X
with a bijection.

Proof. This is [Fra, 16.3].

Definition 3.1.6. Let X be a G-set. We say that G acts faithfully if the only
g ∈ G such that g.x = x for all x ∈ X is 1, i.e., if the map Σ : G→ SX of the
previous proposition is injective.

We say that G acts transitively if, for each x1, x2 ∈ X there exists g ∈ G
such that g.x1 = x2.

Example 3.1.7. The action of SX on a setX is both faithful and transitive. For
simplicity, let us assume that X = {1, . . . , n} and SX = Sn. If a permutation
σ ∈ Sn is such that σ.i = i for all i ∈ {1, . . . , n}, it must be σ(i) = σ.i = i = id(i)
for all i, which means that σ = id. On the other hand, for any i, j ∈ {1, . . . , n}
there is always a permutation sending i to j, namely (i j).

Example 3.1.8. The group D3 acts on the triangle P3 faithfully; even more, a
rotation does not fix any element in P3. It does not act transitively, as there is
no way of sending a vertex to a point in the middle of a side.

Example 3.1.9. Every group G is a G-set, where each g ∈ G acts on x ∈ G by
g.x = gx (left multiplication). This action is faithful and transitive. Indeed, let
g ∈ G such that g.x = x for all x ∈ G. Then gx = g.x = x for all x ∈ G, which
means that g = 1. To see transitivity, let x, y ∈ G and let g = yx−1 ∈ G. Then
g.x = gx = (yx−1)x = y(x−1x) = y. The same is true for right multiplication.

More generally, if H ≤ G, we can act on G by H by left multiplication, so
that G is an H-set.

Example 3.1.10. Every group G can also be a G-set under conjugation, where
each g ∈ G is acting on x ∈ G by g.x = gxg−1. This action is, in general,
neither faithful nor transitive. For example, if G = R∗, for any g ∈ R∗ and
x ∈ R∗, g.x = gxg−1 = x, since R∗ is abelian. Hence every element of R∗ acts
trivially.

In general, let g ∈ G such that, for any x ∈ X, g.x = x. This means that
x = g.x = gxg−1, that is xg = gx. Hence, if an element commutes with all the el-
ements of G, it will act trivially. The set Z(G) = {g ∈ G | gx = xg for all x ∈ G}
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is called the center of G, and is in general a non-trivial subgroup of G. We see
that the action of conjugation is faithful if and only if Z(G) = {1}.

Example 3.1.11. Let H ≤ G and let LH be the set of left coset of H. Then
LH is a coset under the action: if g ∈ G and xH ∈ LH , then g.(xH) = (gx)H.
As in the case of the left multiplication on G, this action is transitive: for each
xH, yH ∈ LH , if g = yx−1 ∈ G, g.(xH) = (gx)H = (yx−1x)H = yH. However
this action is not necessarily faithful. For example if H E G and H 6= {1}, this
action is not faithful. Indeed, for every h ∈ H and xH ∈ G/H = LH , since H is
normal, there exists h′ ∈ H such that hx = xh′. But then h.(xH) = (hx)H =
(xh′)H = xH. Thus every element of H acts trivially, and since H 6= {1}, this
makes the action not faithful.

Example 3.1.12. We saw how {1, . . . , n} is a Sn-set. For example, {1, 2, 3} is
a S3-set. Notice that some transformations fix 1. Let H = {σ ∈ S3 |σ(1) = 1}.
Then H = {id, (23)} which is a subgroup of S3. This is always true.

Lemma 3.1.13. Let X be a G-set and let H ≤ G. The action of G on X
restricts to an action of H on X, making X an H-set.

Proof. For each h ∈ H, since h ∈ G, h.x ∈ X, so we can define a map H×X →
X, (h, x) = h.x. We need to cehc that this is an action. SInce 1H = 1G and X
is a G-set, 1H .x = 1G.x = x for all x ∈ X. If g, h ∈ H, x ∈ X, (gh).x = g.(h.x),
since in particular g, h ∈ G. Thus X is an H-set.

Lemma 3.1.14. Let X be a G-set and let x ∈ X. The set Gx = {g ∈ G | g.x =
x} is a subgroup of G.

Proof. This is [Fra, 16.12].

Definition 3.1.15. Let X be a G-set and let x ∈ X. The subgroup Gx = {g ∈
G | g.x = x} ≤ G is called the isotropy group or stabilizer of x.

Lemma 3.1.16. Let X be a G-set. For each x, y ∈ X, let x ∼ y if and only if
there exists g ∈ G such that g.x = y. Then ∼ defines an equivalence relation on
X. Moreover, the cell of x ∈ X is G.x = {g.x | g ∈ G}.

Proof. The first part is [Fra, 16.14]. By definition, if y ∈ G.x, y = g.x which
means that y ∼ x. On the other hand, if y ∼ x, there exists g ∈ G such that
y = g.x, which means that y ∈ G.x. Hence y ∼ x if and only if y ∈ G.x. Since
the cell of x is x = {y ∈ X | y ∼ x}, we see that x = G.x.

Definition 3.1.17. Let X be a G-set. For x ∈ X, the cell G.x of x (in the
partition of the equivalence relation described in the previous lemma) is called
the orbit of x and is denoted by G.x.

Remark 3.1.18. Since the orbits determine a partition, we have that X =⋃
G.x and two different orbits are disjoint.

We can use stabilizers and orbits to describe faithfulness and transitivity of
actions.
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Lemma 3.1.19. Let X be a G-set. The action is faithful if and only if⋂
x∈X

Gx = {1}.

The action is transitive if and only if, for each x ∈ X, G.x = X.

Proof. Homework.

Food For Thought 3.1. In the previous lemma, to obtain transitivity is
enough to ask G.x = X for some x ∈ X.

Theorem 3.1.20. Let X be a G-group and x ∈ X. Then |G.x| = (G : Gx).

Proof. This is [Fra, 16.16].

One last very important example of G-set is the following.

Example 3.1.21. Let G be a group and let SG(G) be the set of subgroups
of G. If g ∈ G, ig : G → G, ig(x) = gxg−1, is a group homomorphism (it is
even an isomorphism), as we have previously verified. Since the image via a
homomorphism of a subgroup is a subgroup, for each H ≤ G,

ig(H) = gHg−1 = {ghg−1 |h ∈ H}

is a subgroup of G. Thus we can define, for each g ∈ G and H ∈ SG(G), the
action g.H = ig(H) = gHg−1 ∈ SG(G). We need to check that this is an
action. For 1 ∈ G, 1.H = 1H1−1 = H for all H ∈ SG(G). If g, h ∈ G and
H ∈ SG(G),

(gh).H = (gh)H(gh)−1 = ghHh−1g−1 = g(hHh−1)g−1 = g.(h.H).

Therefore this is an action, and SG(G) is a G-set.
For each H ∈ SG(G), the stabilizer GH = {g ∈ G | gHg−1 = H} is therefore

a subgroup of G. This can be verified directly, [Fra, exercise 36.11].

Exercise 3.2. Do exercise 11 of section 36, that is, verify directly that GH is
a subgroup of G.

Lemma 3.1.22. With the notation of the previous example, H E GH . More-
over, if N ≤ G and H E N , then N ⊆ GH (that is, GH is the biggest subgroup
of G which has H as normal subgroup).

Proof. We need to show that (a) H ≤ GH , (b) H E GH and (c) if N ≤ G and
H E N , then N ⊆ GH .

(a) For each h ∈ H, hHh−1 = H. Indeed, since H is a subgroup and h ∈ H,
hHh−1 = {hgh−1 | g ∈ H} ⊆ H (all the products and inverses are in H).
On the other hand, let g ∈ H. Again, since h ∈ H and H is a subgroup,
h−1gh ∈ H. Thus g = h(h−1gh)h−1 ∈ hHh−1; thus H ⊆ hHh−1. Since
we have shown that, for each h ∈ H, hHh−1 = H, it must be h ∈ GH ,
which implies that H ⊆ GH . Since both H and GH are subgroups of G,
H ≤ GH .
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(b) For each g ∈ GH , by definition of SG, gHg−1 = H, which means that
H E GH .

(c) Let N ≤ G such that H E N and let n ∈ N . By one of the equivalent
characterizations of normality, nHn−1 = H; but the n must be in GH
(by definition of GH). For each n ∈ N we proved that n ∈ GH ; this is
equivalent to N ⊆ GH .

In light of this lemma we give the following definition.

Definition 3.1.23. Keeping the above notation, the subgroup GH is called the
normalizer of H and is denoted by N [H].

Homework. From section 16 do exercises 12, 13. Prove lemma 3.1.19.

3.2 Sylow’s theorems

([Fra], Section 36 )

The version of the first Sylow’s theorem that we will discuss here is a little
weaker (in just one of the statements) than the one of the book. What we loose
in strength of statement, however, we make up in elegance of the proof. Using
the same strategies for the proof, the versions of the second and third Sylow’s
theorems that we will give here are stronger than the ones on the book.

Grothendieck used to say that proving a theorem is like removing a walnut
out of its shell. You have two possible ways to achieve it: you can hammer (and
chisel) the shell as hard as you can until it breaks; or you can moist it until the
shell peels right off, like a ripened avocado. The proofs that we will see here are
more in the sprit of this second philosophy. We will use all the tools we have
seen so far, and the proofs will come at us quite easily (not as easily as the the
peel of an avocado).

Moreover, these proofs are the perfect example of the quote on the website:

“The Theory of Groups is a branch of mathematics in which one
does something to something and then compares the result with
the result obtained from doing the same thing to something else, or
something else to the same thing.”

James R. NEWMAN, The World of Mathematics (1956)

The motivating question is the following. Let G be a finite group. We know
that, if H ≤ G, then the order of H divides the order of G (Lagrange’s theorem).
Can we “invert” this result? Let |G| = n. For which divisors d of n there exists
a subgroup H ≤ G such that |H| = d? Sylow’s theorems are a beautiful, yet
partial, answer to this question.
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Definition 3.2.1. Let G be a finite group of order |G| = pem, where p is a
prime number, e ≥ 1 and gcd(p,m) = 1. A p-subgroup of G is a subgroup
H ≤ G with order |H| = ps, for some 1 ≤ s ≤ e. A Sylow p-subgroup, or
simply Sylow subgroup, of G is a subgroup H of order exactly |H| = pe. The
set of Sylow p-subgroups of G is denoted by Sylp(G).

Example 3.2.2. In G = Z/24, |G| = 24 = 23 · 3. The subgroup 〈6〉 has 4
elements, thus being a 2-subgroup; similarly 〈12〉 is a 2-subgroup. The subgroup
〈3〉, which has exactly 8 = 23 elements, is a Sylow 2-subgroup. A Sylow 3-
subgroup is 〈8〉 (which has exactly 3 elements).

Example 3.2.3. In G = S3, |G| = 6 = 2 · 3, a Sylow 3-subgroup is 〈(1 2 3)〉 (it
has 3 elements), while all the subgroups 〈(1 2)〉, 〈(1 3)〉 and 〈(2, 3)〉 are Sylow
2-subgroups.

The only lemma we will need is a well known result in elementary number
theory (which has a very short proof with the right tools).

Lemma 3.2.4. Let p be a prime number, e ≥ 1 and m a positive integer such
that gcd(p,m) = 1; then p does not divide

(
pem
pe

)
.

Theorem 3.2.5 (First Sylow’s theorem). Let G be a finite group, |G| = pem,
p prime, e ≥ 1, gcd(p,m) = 1. Then Sylp(G) contains at least one element.

Proof. Let P be the set

P = {A ⊆ G | |A| = pe}

of all the subsets of G having exactly pe elements. Note: we are considering the
collection of all subsets, not just subgroups (which a priori might be empty).
For g ∈ G, the action by left multiplication g.x = gx is a permutation, i.e.
bijection, from G to G, thus preserving the cardinality of subsets. If A ∈ P
and g ∈ G, g.A = {g.x |x ∈ A} = {gx |x ∈ A} has the same number of elements
as A, that is pe. Hence g.A ∈ P. We need to check that this an action. If
1 ∈ G and A ∈P,

1.A = {1.x |x ∈ A} = {x |x ∈ A} = A.

If g, h ∈ G and A ∈P,

(gh).A = {(gh).x |x ∈ A} = {g.(h.x) |x ∈ A} = g.{h.x |x ∈ A} = g.(h.A).

There are
(
pem
pe

)
ways of choosing pe element out of a set with pem elements;

thus |P| =
(
pem
pe

)
, which is not a multiple of p. The set P has a partition in

the orbits of the action described above, P =
⋃
G.A, and to different orbits are

disjoint. This means that the number of laments of P is the sum of the number
of elements in each orbit: |P| =

∑
|G.A| (assuming that we are counting each

orbit only once). If p were to divide the number of elements of each orbit, it
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would divide P, which we know is not the case. Hence there must be at least
one orbit G.A such that p - |G.A|.

Let A ∈P be such that p does not divide |G.A| and let GA be its stabilizer,
which is a subgroup of G. We will show that GA is a Sylow p-subgroup. Since
|G|/|GA| = |G : GA| = |G.A|, |G| = pem but p does not divide |G.A|, we deduce
that pe divides |GA|. On the other hand, since GA is the stabilizer of A, for
each g ∈ GA and a ∈ A, g.a ∈ A; thus, for each a ∈ A, GA.a ⊆ A. Since a ∈ G
and right multiplication on group is a bijection, |GA| = |GA.a| ≤ |A| = pe.

Theorem 3.2.6 (Second Sylow’s theorem). Let G be a finite group, P a p-
subgroup and S ∈ Sylp(G) a Sylow p-subgroup. There exists g ∈ G such that
gPg−1 ≤ S.

In particular, all Sylow p-subgroups are conjugate, i.e. if S1 and S2 are
Sylow p-groups, there will exist g ∈ G such that S2 = gS1g

−1.

Proof. Let |G| = pem, p prime, e ≥ 1, gcd(p,m) = 1. Let LS be the set of
left cosets of S, on which we act by G by left multiplication. Since P ≤ G,
the action of G restricts to an action of P . So we can act by P on LS by left
multiplication. For each xS ∈ LS , let Px ≤ P be its stabilizer; the orbit P.(xS)
has |P.(xS)| = (P : Px) = |P |/|Px| elements which is a divisor of |P |. Since the
order of |P is a power of P , the number of elements of P.(xS) must be either 1
or it must be divisible by p, that is, the orbit must be either trivial or with a
number of elements divisible by p. Again the orbits are a partition of the set,
so the number of elements of LS is the sum of the elements in each orbit. As
in the proof of Lagrange’s theorem, since S has pe elements, there are exactly
m cosets of S, that is LS has m elements. Since p does not divide m, there is
at least one orbit of P which has a number of element not divisible by p, which
in this case implies that there exits at least one orbit which has exactly one
element.

Let xS be the coset whose orbit P.(xS) has only one element, namely xS
itself: P.(xS) = {a.(xS) | a ∈ P} = {xS}. In other words, xS is such that, for
all a ∈ P , a.(xS) = xS. Since a.(xS) = (ax)S, we have that, for all a ∈ P ,
xS = a.(xS) = (ax)S. This is equivalent to say they there exists x ∈ G such
that, for all a ∈ P , ax ∈ xS = {xs | s ∈ S}; that is, for each a ∈ P there
exists s ∈ S such that ax = xs. Multiplying on the left by x−1 we see that
this is equivalent to say that, for each a ∈ P , there exists s ∈ S such that
x−1ax = s ∈ S. Since this is true for all a ∈ P we have that

x−1Px = {x−1ax | a ∈ P} ⊆ S;

setting x = g−1 we showed that there exists g ∈ G such that

gPg−1 ⊆ S.

Since the action of conjugation preserves subgroups, gPg−1 is still a subgroup
of G, which implies that it is a subgroup of S.

To prove the last part of the statement, let S1 and S2 be Sylow p-subgroups.
Since a Sylow p-subgroup is a p-subgroup, by the previous part of the theorem
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applied to the p-subgroup S2 and the Sylow p-subgroup S1, there exists g ∈ G
such that gS2g

−1 ≤ S1. Since the action of conjugation (like any action) is a
bijection, it preserves the number of elements. Thus |gS2g

−1| = |S2| = pe =
|S1|. So we have two sets, gS2g

−1 and S2, one contained into the other and
having the same number of elements; therefore they must be equal, that is,
gS2g

−1 = S1.

Remark 3.2.7. We can paraphrase this result by saying that G acts transi-
tively on the Sylp(G) of Sylow p-subgroups of G.

The last theorem answers the question: how many Sylow’s p-subgroups are
there?

Example 3.2.8. In almost all the above examples there is exactly one Sylow
subgroups, expect for the case of Sylow 2-subgroups in S3. In that case there
are exactly 3. Notice that 3 = 1 in Z/2. Moreover, 6 = |S3| and 6/2 = 3. This
is always the case.

Theorem 3.2.9 (Third Sylow’s theorem). Let G be a finite group, |G| = pem,
p prime, e ≥ 1, gcd(p,m) = 1. Let np be the number of Sylow p-subgroups of
G, np = |Sylp(G)|. Then

(a) np = 1 in Z/p;

(b) np divides m.

Remark 3.2.10. Part (a) says that np has remainder 1 when divided by p, that
is, np = pk + 1 for some k ∈ Z. If you are familiar with the modular notation,
you can restate (a) as np ≡ 1 (mod p).

Proof. Let Sylp(G) = {S0, . . . , Sr} be the set of all Sylow p-subgroups, so that
np = 1 + r. If r = 0, then np = 1 and both (a) and (b) are immediately verified.

Let us assume that r > 0 (so there are at least two Sylow p-subgroups).
Let g ∈ G; since conjugation sends subgroups to subgroups and preserves the
number of elements (as observed in the proof of the second Sylow’s theorem), for
each Sylow p-subgroup S, gSg−1 is still a Sylow p-subgroup. Let g ∈ S0 and let
Si be another Sylow p-subgroup. By what we have just mentioned gSig

−1 is still
a Sylow p-subgroup. On the other hand, since Si 6= S0 and g ∈ S0, gSig

−1 6= S0.
Indeed, if it were gSig

−1 = S0, then for each s ∈ Si, gsg−1 = s′ ∈ S0 (for some
s′). This would imply that s = g−1s′g, which is in S0 since g, s′ ∈ S0. Hence
this would imply that Si ⊆ S0. Since these are both Syolw p-subgroups, they
have the same number of elements, which in turn would imply that Si = S0,
which we assumed not to be.

Let S = {S1, . . . , Sr} be the set of Sylow p-subgroups except S0. We have
just shown that the S0 acts on S by conjugation (this is still an action since it
is the restriction of the action of conjugation of G on the set of subgroups):

for a ∈ S0, Si ∈ S , a.Si = aSia
−1 ∈ S .
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Let us assume that there exists Si ∈ S such that a.Si = Si for all a ∈ S0, that
is, such that

aSia
−1 = Si, for all a ∈ S0.

This means that for the elements of S0, Si is normal, that is, S0 ≤ N [Si] = {g ∈
G | gSig−1 = Si}. On the other hand it is always true that a group is contained
in its normalizer, so that Si ≤ N [Si]. Since N [Si] is a subgroup of G, its order
will be a divisor of G (by Langrange’s theorem), so that |N [Si]| = pfn, where
0 ≤ f ≤ e and n divides m. Since Si ≤ N [Si], again by Lagrange’s theorem
pe = |Si| divides |N [Si]|. Therefore the order of N [Si] must be

|N [Si]| = pen, with n dividing m.

This means that S0 and Si are Sylow p-subgroups of G′ = N [Si]. By the second
Sylow’s theorem applied to G′ = N [Si], they must be conjugates, i.e. there
exists g ∈ G′ = N [Si] such that gSig

−1 = S0; but this is impossible since Si is
normal in N [Si] (and thus gSig

−1 = Si for all g ∈ N [Si]).
We have a group S0 whose order is a power of p acting on a set S . As in

the proof of the second Sylow’s theorem, the number of elements of an orbit
is a divisor of of the order of the group: let x = Si ∈ S and let (S0)x be the
stabilizer of x = Si; then |S0.x| = |S0|/|(S0)x|. Since the order of |S0| is a power
of p, the number of elements of each orbit is either a positive power of p or 1.
The number of elements in the orbit of Si is one if and only if g.Si = Si for
all g ∈ S0, but we have proved that this cannot happen. Hence p divides the
number of elements of each orbit. Since the collection of orbits is a partition
of S , the number of elements of S , which is r, is the sum of the elements in
each orbit. Since p divides the number of elements of each orbit (and the sum
of numbers divisible by p is still divisible by p), p divides r.

We have proven that np = 1 + r where p divides r. This concludes the proof
of (a).

Let have G act by conjugation on the set of Sylow p-subgroups Sylp(G).
By the second Sylow’s theorem, the action is transitive. This means that, for
any x = Si ∈ Sylp(G), the orbit G.x = G.Si is the whole set of Sylow p-
subgroups: G.x = G.Si = Sylp(G). As observed before (example 3.1.21, lemma
3.1.22 and definition 3.1.23), for x = Si ∈ Sylp(G) the stabilizer Gx = GSi

is the normalizer N [Si] whose order we computed in part (a). We found that
|GSi
| = |N [Si]| = pen, with n dividing m. Then

|G.Si| = (G : GSi) =
|G|
|GSi
|

=
|G|
|N [Si]|

=
pem

pen
=
m

n
.

On the other hand, since G.Si = Sylp(G), these two sets have the same number
of elements, namely np: np = |Sylp(G)| = |G.Si|. The above chain of equalities
is therefore

np = |G.Si| =
m

n
,

which shows that np is a divisor of m, proving (b).
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Recall that a group G is simple if its only normal subgroups are G and {1}.

Example 3.2.11. No group of order 15 is simple. Indeed, let G be a group
|G| = 15 = 3 · 5. By the first Sylow’s theorem, G has at least one Sylow 5-
subgroup, which in this case is a subgroup of order 5. If n5 is the number
of Sylow p-subgroups, by the third Sylow’s theorem, n5 must be congruent 1
modulo 5 and it must divide 3 (which is m in this case). The only possibility
is if n5 = 1. So G has exactly one Sylow 5-subgroup S. By the second Sylow’s
theorem, all G acts transitively by conjugation on the set of Sylow 5-subgroups.
But since there is only one such subgroup, for all g ∈ G, gSg−1 = S, that is, S
is normal. Hence G has a normal subgroup of order 5, showing that G is not
simple.

Example 3.2.12. Continuing the previous example, since S has 5 elements, it
must be S ∼= Z/5. Moreover, G/S has 3 = 15/5 elements, and thus it must be
G/S ∼= Z/3. So we have just proved that, if G is a finite group of order 15, it
must contain a copy S of Z/5 which is normal and G/S ∼= Z/3. This is the first
step towards a classification, since it gives us a lot of information on how such
a group should look like.

Homework. From section 36 do problems 12, 13, 18.
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